在平面四边形ABCD中,连接对角线BD,已知CD=9,BD=16,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:21:52
显然题目错应为:求证:平面PAC⊥平面PBD.证明:因PA⊥平面ABCD,则:PA⊥BD,又四边形ABCD是菱形,从而据菱形的性质:两对角线AC⊥BD.故BD⊥平面PAC,又因为BD属于平面PBD,从
取PC中点M,连结EM、FM,则EM是△PDC中位线,EM//PD,同理FM//BC,∵四边形ABCD是矩形,∴BC//AD,∴FM//AD,∵AP∩PD=P,EM∩FM=M,∴平面EFM//平面PA
你应该有图吧..看图比较好理解证明PA⊥底面,CD⊂面ABCD∴PA⊥CD又CD⊥AD,PA∩AD=A∴CD⊥面PAD又∵AE⊂面PAD∴CD⊥AE又∵AE⊥PD,CD∩PD=
在平行四边形ABCD中,AE=EB,CF=2FB,连接CE、DF相交于点,AM=mAB+nAD,求实数m、n的乘积确定题目无误!实数m、n的乘积3/4*1/2=3/8利用比例线段的有关知识可知AM延长
(1)CF中点假设为G,EG//BD所以BD//平面CEF(2)45°得到,CD=DE再问:能在详细点吗?再答:(1)OG//AF,OG⊥平面ABCD,OG=AF/2=DE,ODEG是个矩形,所以EG
1,y=二分之三x+42,y=二分之三x减23,y=二分之一x+1(ab解析式)4,y=4
如图示,连结AC和BD,相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,∵PA⊥平面ABCD,∴PA⊥BD,且PA∩AC=A,∴BD⊥平面PAC,∴平面PAC⊥平面PBD.
证明:∵AB+CD≤AC+CD∴AB≤AC
证明:过B点作BE⊥AC于E∵平面ABC⊥平面ACD∴BE⊥平面ACD∵CD∈平面ACD∴BE⊥CD∵AB⊥平面BCD CD∈平面BCD∴AB⊥CD∵AB∩BE=B,AB∈平面A
证明:过B点作BE⊥AC于E∵平面ABC⊥平面ACD∴BE⊥平面ACD∵CD∈平面ACD∴BE⊥CD∵AB⊥平面BCD CD∈平面BCD∴AB⊥CD∵AB∩BE=B,AB∈平面A
连接AC,因为点E、F、G、H分别为AB、BC、CD、DA的中点,利用三角形中位线定理得EF平行且等于二分之一的AC、GH平行且等于二分之一的AC,所以EF平行且等于GH,所以EFGH是平行四边形.
(1)证明:因为AD//BC,∠ABC=90,所以有AD⊥AB,又平面PAB⊥平面ABCD,且AB为交线,所以可证AD⊥平面PAB,根据线面垂直的性质有AD⊥AP;同理可证AB⊥AP,又AB和AD都在
解题思路:计算解题过程:亲爱的同学,题目中的图片看不见。请重新发给我,好吗?最终答案:略
(1)判断四边形的形状四边形A1B1C1D1是(矩形)四边形A2B2C2D2是(菱形)四边形A2009B2009C2009D2009是(矩形)(2)四边形A1B1C1D1的面积(12)四边形A2B2C
(1)∠ACB+∠ADB=180°∠CAD+∠CBD=180°∠ABC=∠BAC=60°∠ACB=60°三角形ACB是等边三角形因为四边形ABCD四点共圆,且∠ADC和∠BDC所对的弧的弦(AC=BC
(1)D的坐标为(2,1)(2)2秒后所得的四边形A1B1C1D1四个顶点的坐标各向右平移2个单位即x轴加2,所以A1(-1,1)B1(-1,3)C1(4,3)D1(4,1)(3)设为x秒后,平移后△
连接bd,因为f,g为bc,dc中点,所以fg平行且等于二分之一bd,同理可得,eh平行且等于二分之一bd,一组对边平行且相等的四边形是平行四边形,所以efgh是平行四边形
解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE