在平面直角坐标系xoy中,点A坐标为(1,0),以OA为边在第一象限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:47:04
在平面直角坐标系xoy中,点A坐标为(1,0),以OA为边在第一象限
在平面直角坐标系XOY中,点p(x,y)为动点,已知点A(根号2,0)

(1)x^2/2+y^2=1(x≠±根号2,y≠0)(2)设l的方程为:x=ty+1与x^2/2+y^2=1联立消去x得:(ty+1)^2+2y^2-2=0即(t^2+2)y^2+2ty-1=0设M(

如图,在平面直角坐标系xOy中,直线l1过点A(0,3)且与x轴平行,直线l2:y=3/4x在平面直角坐标系xoy中 ,

(1)B点坐标为(4,3)设反比例函数为y=k/xk=4*3=12所求反比例函数为y=12/x(2)∵BC=5,BC∥OA∴B点坐标为(4,8)或(4,-2)设直线AC为y=ax+3则8=4a+3或-

在直角坐标系xoy中在平面直角坐标系xoy中,若与点A(2,2)的距离为1且与点B(m,0)的距离为3的直线恰有

与点A(2,2)的距离为1的点确定了一个圆O1与点B(m,0)的距离为3的点确定了一个圆O2题目所要求的直线也就是两个圆的公切线依题意,这样的公切线只有两条所以可以判断这两个圆必然相交所以有:(设圆心

在平面直角坐标系XOY中衡过一定点(a,b)的直线方程应该是怎样的?

y=k(x-a)+b再答:k为实数再答:还有一条线无法表示,那就是x=a

在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行.

存在∵当反比例函数过点P时K=2,且此时以M、E、F为顶点不能构建三角形∴分两种情况讨论当k<2时,(作图,图我就不画了)由图可得以M、E、F为顶点的三角形与△PEF全等,只可能为△MEF≌△PEF,

在平面直角坐标系xOy中,抛物线y=1/4x²+bx经过点A(2,-4)

(1)∵抛物线y=¼x²+bx经过点A(2,-4)∴1+2b=-4解得:b=-5/2∴抛物线的解析式是y=¼x²-(5/2)x(2)∵y=¼x

如图,在平面直角坐标系xOy中,已知直线l1、l2,都经过点A(-4,0),

(1)就是OA/OB=4/3,而OA长为4,所以,OB长为3,B(0,3).可设l1的方程为y=kx+3,将A的坐标代入得k=4/3,l1的方程为y=(4/3)x+3;(2)△AOC的面积为4,而OA

如图,在平面直角坐标系xOy中,已知直线l1、l2都经过点A(-4,0),

1)就是OA/OB=4/3,而OA长为4,所以,OB长为3,B(0,3).可设l1的方程为y=kx+3,将A的坐标代入得k=4/3,l1的方程为y=(4/3)x+3;(2)△AOC的面积为4,而OA长

已知 如图 在平面直角坐标系xoy中,a(-2,0),b(0,4),点c在第四象限

27.如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比

在平面直角坐标系XOY中直线m过点A(1,根号3),B(3,-根号3).

1,由两点间的距离公式得AB²=(3-1)²+(-根3-根3)²=4+12=16,所以AB=4..2,由于OA²=4,OB²=12.,所以OA

如图,在平面直角坐标系xOy中,点A(0,8)、B(-6,0),AB=10

一CB关于y对称,所以CB两点的横坐标为相反数,纵坐标相等所以C(6,0)二链接AP有三角形ABP的面积加上三角形APC的面积等于三角形ABC的面积所以有AB*PE/2+AC*PG/2=8*12/2A

在平面直角坐标系xoy中,

1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点

在平面直角坐标系xoy中 直线y=x=根号2与x轴交于点a

因为图像在第一象限内,所以k>0,因为点B的横坐标为根号2,所以把x=根号2代入直线y=x+根号2,解得y=2根号2,即B(根号2,2根号2),将B坐标代入反比例函数y=k/x,解得k=4

如图所示 在平面直角坐标系xoy中,

(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x

如图,在平面直角坐标系XOY中,点A(0,8),B(-6,0),AB=10

⑴C(6,0)⑵选①PE+PG=定值.理由:SΔABC=1/2BC*AO=48,又SΔABC=SΔABP+SΔACP=1/2AB*PE+1/2AC*PG=5(PE+PG),∴PE+PG=48/5为定值