在平面直角坐标系中 一只蚂蚁从原点o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:13:38
解题思路:MN的中垂线就是AB,求出AB的直线方程即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.co
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
(1)B(2,2);(2)根号10;A(根号2,0),C(0,根号2),B(根号2,2倍根号2)(3)A(x,0),C(0,根号下(4-x))列个方程求最大值再问:过程==
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
(C63-C33-C43)/C63=3/4C63,为任意取三个点的种类C33,因为因为DCB在一条直线,把这个要减掉C43,ACEF四点一线,任意取三个点的要减掉应该明白了吧其实楼上回答了已经很好了,
12、d(A,B)=|a-1|+|y-1|=a-1+|y-1|>a,则|y-1|>1,y2;14、最小值(经过点(3,1))z=3+1=4,极大值(经过点(5,1))z=5+1=6(无法取到此值);选
解题思路:本题主要考察了三角形的面积算法和勾股定理等知识点。解题过程:
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
如果原点的记作A0,答案该是(1006,1).移动一个周期只是横坐标加2,2013能移动503个周期,再加一个向上移动.故横坐标503*2,纵,1
这题吗?如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长得速度运动t秒(t大于0),抛物线y=x²+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:
位移是矢量,有大小和方向2个要素位移L1即图中OA,与x轴夹角为a; L2即OB,与x轴夹角为b(A点和B点应该有箭头)有直角三角形知识易知:OA长2.5 ,a=37°OB长6&n
①我们先不看方向,只看看移动的路程:按规律,应该是1,1,2,2,3,3...两个为一组,每组中移动距离相等,可以看做两个相等的等差数列.经过30次平移,也就是15组,总路程就是两个等差数列的和.也就
1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点
解题思路:利用图形的平移与坐标变换来解。解题过程:解:通过看图,我们可以知道,a=0.5,m=0.5,n=2,设F=(x,y)变换后=(ax+m,ay+n),因为,F与F'重合,所以,ax+m=x,a
根号a^2-4+根号4-a^2+16/a+2能不能写具体点根号里都包含哪些?
(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x
a=0,b=2,c=8
解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.