在平面直角坐标系中,一直a(6,0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:01:21
解题思路:MN的中垂线就是AB,求出AB的直线方程即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.co
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
关于作AY轴对称点,连接对称点(-3,-2)和B点与Y轴交点就是,再问:这我也知道,可不会求C坐标再答:--2/7,0再问:是在y轴,你这是在x轴上再答:我打反了
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
先把点M到直线ab的距离d表示出来s=d*ab/2再把y用1问中的解析式代换,即得到S的表达式!求最大值你会的!@第三题,需要画图,而且要准些,只需大概判断,不需要求出位置,利用对边平行,就可以判断!
显然抛物线y=ax^2过原点且焦点在y轴上,图象关于y轴对称又点A、B都在抛物线y=ax^2上,△AOB为等边三角形则可以推出A,B也关于y轴对称设A(x0,ax0^2)则B(-x0,ax0^2)(x
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
如图,①当点C位于y轴上时,设C(0,b).则(5)2+b2+(−5)2+b2=6,解得,b=2或b=-2,此时C(0,2),或C(0,-2).如图,②当点C位于x轴上时,设C(a,0).则|-5-a
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0;(1)求a、b、c的值;(2)如果在第二象限内有一点
在一、三象限.
解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:
(1)依条件有D(0,-4),E(0,.1)由△OEA∽△ADO知OA=OE*OD=4.∴A(2,0)由Rt△ADE≌Rt△ABF得DE=AF∴F(3,0).将A,F的坐标代入抛物线方程,得4a+2b
1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点
3个试题分析:如图,AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6﹣2=4.以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,∵OB=6,∴点B到
(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x
解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.
根据A、O、B三点坐标可得△AOB的形状是等腰直角三角形