在平面直角坐标系中,已知C(-3,0),点A,B分别在x轴,y轴的正半轴上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:18:12
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
因为BC经过原点而且C(2,1)B横坐标为-4,所以B点坐标为B(-4,-2),因为A中点坐标为4且在y轴上,所以A(0,8)所以三角形面积为S=(4+2)×(8+2)/2=30再问:点击[http:
[(a+r)y-t(x+r)][(a-r)y-t(x-r)]+s(x^2+y^2-r^2)=0表示的是一条2次曲线,经过四点P,Q,A1,A2.其中s是一个参数,你想像s越大,这个曲线越像圆,s越小,
再问:第二问是不是应该要讨论k是否存在?再答:讨论下会更好,但是比较难以说明。不讨论也无所谓,因为答案就是k不存在的情况。
关于作AY轴对称点,连接对称点(-3,-2)和B点与Y轴交点就是,再问:这我也知道,可不会求C坐标再答:--2/7,0再问:是在y轴,你这是在x轴上再答:我打反了
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
三角形ABC 面积等于矩形面积减去3个直角三角形的面积=5*4-(2*5+2*2+3*4)/2=7
横平竖直法做AM垂直X轴,CM垂直Y轴,AM和CM交于M做AN垂直Y轴,CM垂直Y轴,AN和CN交于N连接BN三角形ABC=矩形AMCN-三角形ABN-三角形CBN-三角形AMC=5*5-5*2/2-
27.如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比
x=1+sy=1-s两式相加,得:x+y=2所以直线方程为y=2-xx=t+2,y=t²则t=x-2所以曲线C方程为y=(x-2)²两式联立:y=2-xy=(x-2)²解
如图,①当点C位于y轴上时,设C(0,b).则(5)2+b2+(−5)2+b2=6,解得,b=2或b=-2,此时C(0,2),或C(0,-2).如图,②当点C位于x轴上时,设C(a,0).则|-5-a
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:
可以设B(6cosa,4sina)然后算,但很麻烦用椭圆的性质做比较简便(sinA+sinC)/sinB=(BC/2R+AB/2R)/(AC/2R)(正弦定理)=(BC+AB)/AC=(BC+BA)/
(1)设解析式为:y=ax^2+bx+c分别把A(-4,0);B(0,-4);C(2,0)代入得a=1/2b=1,c=-4解析式为:y=x^2/2+x-4(2)过M作ME垂直X轴于E点,交AB与D点,
1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点
(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x
没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且