在数列an中,a1=5分之3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:55:47
利用叠加法a(n+1)=a(n)+1/[n(n+1)]∴a(n+1)-a(n)=1/[n(n+1)]=1/n-1/(n+1)∴a(2)-a(1)=1-1/2a(3)-a(2)=1/2-1/3a(4)-
a(n+1)=3an/(an+3)a2=(3*1/2)/(1/2+3)=(3/2)/(7/2)=3/7a3=(3*3/7)/(3/7+3)=(9/7)/(24/7)=9/24=3/8a4=(3*3/8
第1问:设数列{bn},令bn=an-n则an=bn+n代入a(n+1)=4an-3n+1得b(n+1)+n+1=4(bn+n)-3n+1化简得b(n+1)=4bn所以数列{bn}即数列{an-n}是
a(n+1)=-2an+3a(n+1)+k=-2an+3+k=-2(an-3/2-k/2)则令k=-3/2-k/2k=-1则两边同时加-1a(n+1)-1=-2(an-1)[a(n+1)-3]/(an
由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n
a1+a2+.+an=2^na1+a2+.+an+a(n+1)=2^(n+1)两式相减得a(n+1)=2^n所以an=2^(n-1)在已知式中令n=1得a1=2令n=2得a2=2所以数列的通项公式为a
等式两边倒数,得到1/an+1=1+3/an,再变形,得到:(1/an+1)+1/2=3(1/an+1/2)所以{bn}={1/an+1/2}是一个等比数列,第一项b1=1/a1+1/2=1所以bn=
3^n+2是什么意思,是2+3^n还是3^(n+2)如果是3^n+2那么题目有问题,请把题目说清楚,不然没办法做题的,根据题目后面的问题我按照3^(n+2)解答.an+1=3an+3^(n+2),等式
当n=2时(a1+a2)/2=(2*2-1)*a2得a2=1/15当n=3时(a1+a2+a3)/3=(2*3-1)*a3得a3=1/35当n=4时(a1+a2+a3+a4)/4=(2*4-1)*a4
n这是3^n吧.两边同时除以2的n+1次方,则a(n+1)/2^(n+1)=a(n)/2^n+(3/2)^n再用累加法:a2/2^2-a1/2=3/2a3/2^3-a2/2^2=(3/2)^2…………
a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1
由an+2-3an+1+2an=0,得an+2-an+1=2(an+1-an)所以{an+1-an}是等比数列,即an+1-an=(a2-a1)•2n-1=3•2n-1再注意到
a(n+6)=an,就说明an的数值是不断周期性的重复的,重复的间隔就是6,从第i项ai开始,往后数6项,即第i+6项就和第i项的数字相等了.既然是6个一循环.那么100中有多少个6,就是经历了多少个
a2=(1/2+3)/3*1/2=3/7a3=(7/3+3)/3*7/3=16/21a4=(16/21+3)/3*16/21=79/48
(1)、a2=2a1/(2a1+1)=(4/3)/(4/3+1)=4/73a=2a2/(2a2+1)=8/15因为a2-a1不等于a3-a2,所以an不是等差数列又因为a2/a1不等于a3/a2,所以
log2(an+1-an/3)-log2(an-an-1/3)=1log2[(a(n+1)-an/3)/(an-a(n-1)/3)]=log2(2)(a(n+1)-an/3)/(an-a(n-1)/3
根据an+1=2an2+an,得2an+1+an+1an=2an,两边同时除以an+1an,得到2an+1−2an=1,所以数列{2an}是公差为1的等差数列,且2a1=2,所以2an=n+1,所以a
(1)an+1=3an+3n+1,∴an+13n+1=an3n+1,于是bn+1=bn+1,∴{bn}为首项与公差均为1的等差数列.又由题设条件求得b1=1,故bn=n,由此得an3n=n∴an=n×
an+a(n+1)=6/5^(n+1)=(5+1)/5^(n+1)=1/5^n+1/5^(n+1)a(n+1)-1/5^(n+1)=-(an-1/5^n)a1-1/5^1=1/5-1/5=0an-1/