在数列an中,an=4n-5 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:12:09
在数列an中,an=4n-5 2
在数列{an}中,a1=2,an+1=4an-3n+1

第1问:设数列{bn},令bn=an-n则an=bn+n代入a(n+1)=4an-3n+1得b(n+1)+n+1=4(bn+n)-3n+1化简得b(n+1)=4bn所以数列{bn}即数列{an-n}是

在数列an中,a1=2 an+1=an+3n则an=

由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n

在数列{An}中,A1=2 An+1=4An-3n+1 n为正整数 求{An}的前n项和Sn

设:(An+1)+p(n+1)+q=4[An+pn+q]解得p=-1,q=0即An+1=4An-3n+1等价于(An+1)-(n+1)=4(An-n)若设Bn=An-n则Bn+1=4Bn则Bn=B1*

在数列an中,a1=1,an+1 2an+2的n次方

a(n+1)=2an+2^n,bn=an/2^(n-1),b(n+1)=a(n+1)/2^n,b1=a1/2^0=1a(n+1)/2^n=an/2^(n-1)+1,b(n+1)=bn+1,bn为首项为

在数列{an}中,a1=2,an+1=4an-3n+1,n属于N,证明:{an-n}是等比数列.

a(n+1)=4an-3n+1⇒a(n+1)-(n+1)=4(an-n)所以{an-n}是以4为公比的等比数列且a1-1=2-1=1an-n=4^(n-1)an=4^(n-1)+n

在数列{an}中,an>0,2√Sn=an+1,n∈正整数,

∵2√Sn=an+1,∴Sn=(an+1)^2/4∴S(n-1)=(a(n-1)+1)^2/4两式相减,得到an=Sn-S(n-1)=1/4*(an^2-a(n-1)^2)+1/2*(an-a(n-1

在数列an中,a1=9,an+1=3an+3n+2

3^n+2是什么意思,是2+3^n还是3^(n+2)如果是3^n+2那么题目有问题,请把题目说清楚,不然没办法做题的,根据题目后面的问题我按照3^(n+2)解答.an+1=3an+3^(n+2),等式

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N※

(1)由an+1=4an-3n+1得[a(n+1)-(n+1)]/(an-n)=4所以数列{an-n}是公比为4的等比数列(2)设数列{an-n}的通项为bn,前n项的和为Tnb1=a1-1=1Tn=

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*

(1)∵an+1=4an-3n+1n∈N*,∴an+1-(n+1)=4an-3n+1-(n+1)…(4)分=4an-4n=4(an-n)…(6)分∴{an-n}为首项a1-1=1,公比q=4的等比数列

在数列{an}中,an=4n-5/2,an=4n-5/2,a1+a2+...+an=an^2+bn,其中n属于N*,a、

a1+a2+...+an=a*n^2+bnan=4n-5/2,易知{an}为等差数列利用等差数列求和公式得:n[3/2+4n-(5/2)]/2=a*n^2+bnn(4n-1)=2a*n^2+2bn4n

在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*),则a100等于( an+2=an+1-an

a(n+6)=an,就说明an的数值是不断周期性的重复的,重复的间隔就是6,从第i项ai开始,往后数6项,即第i+6项就和第i项的数字相等了.既然是6个一循环.那么100中有多少个6,就是经历了多少个

在数列an中,a1=1,Sn=n²an,则an=

n≥2时an=Sn-S(n-1)=n²an-(n-1)²a(n-1)∴an/a(n-1)=(n-1)/(n+1)∴a2/a1=1/3a3/a2=2/4a4/a3=3/5……a(n-

在数列{An}中,已知An+A(n+1)=2n (n∈N*)

(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.

(Ⅰ)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*.又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列.(Ⅱ)由(Ⅰ)可知an-n=4n-

在数列{an}中,a1=2,an+1=4an-3n+1,n属于正整数 (1)证明{an-n}是等比数列 (2)求数列{a

an+1=4an-3n+1an+1-(n+1)=4[an-n][an+1-(n+1)]/[an-n]=4等比a1-1=3an-n=3*4^(n-1)an=3*4^(n-1)+n2\sn=[3*4^(n

在数列{an}中,a1=3,an+1=3an+3n+1.

(1)an+1=3an+3n+1,∴an+13n+1=an3n+1,于是bn+1=bn+1,∴{bn}为首项与公差均为1的等差数列.又由题设条件求得b1=1,故bn=n,由此得an3n=n∴an=n×

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1

在数列中A1=2 An+1=4An-3n+1证明An-n是等比数列

An+1=4An-3n+1An+1-(n+1)=4An-4nAn+1-(n+1)=4(An-n)[An+1-(n+1)]/[(An-n)]=4即:An-n是等比数列An-n=4^(n-1)An=4^(

数列累加法在数列{an}中,a1=1,an=an-1+n 求an

an-a(n-1)=n则a(n-1)-a(n-2)=n-1a(n-2)-a(n-3)=n-2.a2-a1=2上述各式相加an-a1=2+3+4+.+nan=1+2+3+4+.+n化简得an=n(1+n