在椭球面x2 a2 y2 b2 z2 c2=1取一个点,使其三个坐标乘积最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:18:03
查教材可以得了这几个概念的定义.但实际应用中,参考椭球体和基准面几乎用不上.大地水准面倒是常用.参考椭球体是个几何概念,较规则,平时定义的1954北京坐标系等就是在它上面.大地水准面是个物理概念,他是
(x/a)^2+(y/b)^2+(z/c)^2=1
大地水准面的形状实际上是不规则的,是一个重力等位面,海平面也不是规则椭圆.为了便于计算,模拟大地形状拟合出一个椭球体.具体你可以百度“大地水准面”和“参考椭球体”.
电脑都看不清楚.你答出来撒!再问:y^2dydz+yz^2dxdz+zx^2dxdyS为椭球面x^2/a^2+y^2/b^2+z^2/c^2=1的外侧手机像素拙计==求各位大大见谅再答:我只给你一个提
地球椭球体(Ellipsoid)众所周知我们的地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面.假想一个扁率极小的椭圆,绕大地
因为地球上的海平面高度是有差别的,于是大地水准面实际上并不是个各处完全平坦的标准椭球面,也就是说我们没法用某一个特定函数方程式来表示它,那么,因为各处的海拔起始标高不一样,在进行统一的计算和测量的时候
椭球面在每个坐标平面上的投影都是椭圆,你可以用它的方程去验证.而旋转椭球面是可以用一个椭圆绕对称轴旋转得到,所以它在某个坐标平面上的投影是个圆,通过分析它们的方程你回发现的.他们的方程形式是一样的,也
地球是一个不规程近似椭球体.大地水准面是指假定海洋处于完全静止的平衡状态的海水面,并延伸到大陆地面以下所形成的闭合曲面.当我们在描述地球上某个点的高度时需要一个参考平面,而大地水准面所形成的体型——大
半球面:[fia,theta]=meshgrid([linspace(0,pi,100),pi]);x=sin(theta).*cos(fia);y=sin(theta).*sin(fia);z=co
设F=x^2/a^2+y^2/b^2+z^2/c^2-1则其法线方向为:(Fx,Fy,Fz)=(2x/a²,2y/b²,2z/c²),此方向就是外法线方向将(2x/a
设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x
若椭球面的中心在空间直角坐标系的原点,椭球面方程为X^2/A^2+Y^2/B^2+Z^2/C^2=1,其中A,B,C叫做椭球面的半轴,就是椭球面与X,Y,Z轴正方向的交点.
由对称性,设长方体的一个顶点为(x0,y0,z0)在第一卦限则长方体体积为8*x0*y0*z0,由平均值不等式:1=x0^2/a^2+y0^2/b^2+z0^2/c^2>=3*[x0*y0*z0/(a
二次曲面一般形式为ax^2+by^2+cz^2+2dxy+2eyz+2fxz+gx+hy+iz+j=0考虑观测者在无穷远处观测,方程的一次项和常数项都是小量,因此形状取决于二次式ax^2+by^2+c
1赤道平面,即赤道大圆所在的平面;2纬度圈平面,即与赤道平面平行的平面族;3子午线平面,与赤道平面和纬度圈平面垂直且过地球南北极的平面.这几个平面,是对地球而言的.但是就地球绕太阳的运行而言,还有地球
有好几种方法可以实现.方法一:直接调用Matlab代码,如下[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);surf
参考椭球面surfaceofreferenceellipsoid处理大地测量成果而采用的与地球大小、形状接近并进行定位的椭球体表面.地球体从整体上看,十分接近于一个规则的旋转椭球体.地球椭球由三个椭球