在椭球面上求一点,使函数在该点沿
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:35:05
m=y'(x)=2x使斜率相等:2x=4x=2把x=2带回:y=2^2=4所以此点坐标为(2,4)
[xx,yy,zz]=sphere(40);x=xx*2;y=yy*3;z=zz*4;subplot(2,2,1)surf(x,y,z);axisequalsubplot(2,2,2)surf(x,y
y=-10/x负无穷到00取不到
假设P(x,0)2=|3x-5|/根号(9+16)=|3x-5|/5,解得:x=5或者-5/3,P(5,0)或者(-5/3,0)
函数在一点附近有界但是函数可能是振动的因此不能推出有极限但函数有极限根据极限的有界性能推出在该点附近函数有界
函数在该点有界,不一定有极限,但是在该点有极限,一定在该点附近有界.
二元函数在一点的偏导数存在是该点连续的既非充分也非必要条件.二元函数在一点的可微是在该点连续的充分条件.再问:充分不必要吗?再答:二二元函数在一点的可微是在该点连续的充分条件。如  
对于n阶f(x)导数一点可导不能推出它在领域可导但是一点可导可以推出n-1阶领域可导(就是降一阶就可以领域导了,不降只能说这一点可导,可以想象一下,既然n阶可导了,那么领域必连续,连续必存在原函数且原
这个问题在于这个函数在这一点连续是否,一个连续函数在其连续区间内任何一点的极限都是与其函数值相等的;对于一个函数在这一点不连续时,这一点作为间断点,可以不等于函数在这一点的函数值,也就是说,函数在这一
思路:利用极限定义,以及和差化积x->x0时,cosx-cosx0=-2sin[(x+x0)/2]sin[(x-x0)]/2->0其中:x->x0,[(x+x0)/2->x0,sin[(x+x0)/2
错!如果x0是函数f(x)的间断点,但左极限及右极限都存在但不相等,则称x0为函数f(x)的第一类间断点
设F=x^2/a^2+y^2/b^2+z^2/c^2-1则其法线方向为:(Fx,Fy,Fz)=(2x/a²,2y/b²,2z/c²),此方向就是外法线方向将(2x/a
设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x
设F=x^2/a^2+y^2/b^2+z^2/c^2-1则其法线方向为:(Fx,Fy,Fz)=(2x/a²,2y/b²,2z/c²),此方向就是外法线方向将(2x/a
正确!函数在某一点左右极限均存在,但不相等时的情况!我不记得第一类间断点的定义了,按定义来判断,是不会错的!
有好几种方法可以实现.方法一:直接调用Matlab代码,如下[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);surf
在大地测量中方位是以北点为起算点,按顺时针方向度量,其值亦是由0°~360°.这种量算方位所得的数值,与天文测量上量算的方位值相差180°,如北点为0°,东点为90°,南点为180°,西点为270°.