在正方形ABCD中,E,G分别在DA,DC上,且DE=DG

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:57:06
在正方形ABCD中,E,G分别在DA,DC上,且DE=DG
如图,在正方形ABCD中,E,F,G,H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么

四边形EFGH是正方形∵AE=BF=CG=DH∴BE=CF=DG=AH∴△AEH≌△FBE≌△GCF≌△HDC∴EF=FC=CH=HE,∠AHE=∠HCD∵∠HCD+∠CHD=90°∴∠AHE+∠CH

已知在正方形ABCD中,点E.F.G.H分别在AB.BC.CD.DA上,且EG垂直于FH,求证EG=FH.

证明:分别过点G、H作GN⊥AB,HM⊥BC,垂足分别为N,M,则∠GNE=∠HMF=90°且易得GN=HM,由正方形ABCD得∠B=90°,由EG⊥FH得∠EOF=90°所以∠OEB+∠BFO=18

在如图所示的几何体中,四边形ABCD是正方形,MA垂直面ABCD,PD平行MA,E,G,F分别为MB,PB,PC中点

证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别

分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别

有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

在正方形ABCD中,E,F,G,H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什麽特

正方形,通过边角边证全等,然后证明一个角是90度即可,两三角形全等,所以两个角和为90度

如图1,在正方形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且AE=BF=CG=DH

(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵HA=EB=FC=GD,∴AE=BF=CG=DH,∴△AEH≌△BFE≌△CG

在正方形ABCD-A1B1C1D1中,E,F,G,H,M,N分别是正方形的棱A1A,AB,BC,CC1,C1D1,D1A

应该少条边吧点N在BC边上延长EM,DD1交于点P,延长FN,DC交与点Q,连接PQ,分别交D1C1,CC1于点H1,G1,证明点H1,G1分别与点H,G,重合证明方法基本都是平分线定理

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

如图,在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,且E、F、G分别为DB、AD中点,补充如下

“e,f,g分别为BD,AD中点”有三个点怎么只给两条边?题目写清楚再问:噢不好意思少打了一条边是E、F、G分别为DB、DC、AD的中点再答:EF和BC平行,BC属于面VBC,所以EF平行于面vbc因

在正方形ABCD中,EF垂直GH,E,F分别在AB,CD上,G,H分别在AD,BC上...

证明:平移EF、GH使点F、G分别与C、D重合,设此时EF、GH交于点O.在RT三角形HCD中,因为OC垂直于HD,所以OC平方=OH*OD→OH:OC=OC:OD所以:RT三角形OCH∽RT三角形O

​如图,在正方形ABCD中,对角线AC和BD相交于点O ,点E,F,G,H分别是AO,BO,CO ,DC的中

只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条

已知,在正方形ABCD中,点E.F.G.H分别在AB.BC.CD和DA上,且EG垂直于FH,求EG=FH.

(请按如下描述同时作图)证明:作FM⊥DA,EN⊥CDEG与FH交于O;EN与FH交于S∵ABCD是正方形∴FM=AB=BC=EN,且EN⊥FM∵EG⊥FH∴∠EGN=∠ESO∵EN⊥FM∴∠FHM=

在正方形ABCD中,E,F,G,H分别在它的四条边上,且AE=BF=CG=DH.

∵在正方形ABCD中AB=BC=CD=ADAE=BF=CG=DH∴AF=BG=CH=DE∵∠A=∠B=∠C=∠D根据勾股定理得EF=FG=GH=EH∴四边形EFGH为菱形又∠AEF=∠BFG=∠CGH

如图,在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,并且AE=BF=CG=DH.

因为AE=BF=CG=DH所以BE=FC=DG=AH又ABCD为正方形,所以∠A=∠B=∠C=∠D所以三角形AEH全=BEF=FCG=HDG所以∠AEH+∠AHE=90度,EF=FG=GH=HE所以∠

在四棱锥P-ABCD中,ABCD是正方形,PD垂直平面ABCD,PD=AB ,E、F、G分别是PC、PD、BC的中点 (

(1)证明:作PB中点Q,连结AQ.DQ.EQ因为点Q.E分别是PB.PC的中点所以EQ//BC又AD//BC,则EQ//AD即点A.D.E.Q四点共面因为PD⊥平面ABCD,所以PD⊥AD又在底面正

在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,CD中点是G

 当∠EGF=45度时,EF垂直于PCD证明: 连接AC、EG交于点H,连接FH   由题意知:FH//PA,FH⊥ABCD 因为PA⊥AB