在正方形ABCD中,E为AB中点,且DE等于CF,BH平分角CBG(倍长中线法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:57:05
由N往AE引垂线NF,交AE于F∵DM⊥MN∴∠NME+∠AMD=90°∴∠NME=∠ADM在△ADM与△FMN中∵DM=MN,∠ADM=∠FMN,∠DAM=∠MFN=90°∴△ADM≌△FMN∴AM
设正方形ABCD的边长为2a,∵E是AB的中点,∴BE=a,∴CE=BE2+BC2=5a,∵BF⊥CE,∴∠EBC=∠BFC=90°,∵∠ECB=∠BCF,∴△BCF∽△EBC.∴BC:EC=2:5.
BEFC=(A+B)/2*(A-B)BEF=(A-B)*B/2BFG=(A+B)/2*B-A*B/2
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
(2)做AM垂直PB交PB于点M,连接MC因为PD=DC,PD垂直底面ABCD,设正方形边长a易得PA=PC=√2a且三角形PAB与三角形PAC全等所以AM垂直PB,MC垂直PB即角AMC为所求角度因
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
(1)证明:连接BD交AC于点O,连接EO.∵O为BD中点,E为PD中点,∴EO∥PB.∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)∵四边形ABCD是正方形∴BD⊥AC,∵PA⊥平
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
证明,连接AC并取AC中点P,连接EP,PF在三角形SAC中,FP是中位线,所以FP//SA,所以FP//平面SAD又在正方形ABCD中,P是AC中点,所以P也是BD的中点,所以EP也是中位线且EP/
设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE
S⊿DEF=16﹙1-1/4-3/8-1/16﹚=5﹙面积单位﹚
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5
因为OD垂直并平分AB,所以AD=AB/2因为OE垂直并平分AC,所以AE=AC/2AB=AC,所以AD=AE所以ADOE是正方形.(题目中ABCD写错了)
侧棱SD⊥底面ABCD这一条件多余.证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH因为FG平行于CD,且CD平行于AE(已知+正方
题目有误:F应该是AD上的一点AF=1/4AD设边长是1因为E为AB的中点AF=1/4AD所以AE=BE=1/2AF=1/4BC=1因为AF/EB=AE/BC=1/2∠A=∠B所以△AEF相似△BEC
设底面正方形边长为1,DE=√5/2,△PDB是RT△,BD=√2,PD=1,PB=√3,DF=PB/2=√3/2,PA=√2,EF=PA/2=√2/2,根据勾股定理
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明