在正方形ABCD中,P为BC上一点,Q为DC上一点,QP=DQ BP,求角PAQ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:11:12
三角形PCQ的周长是4方法是:延长PB到M,使BM=DQ,连AM,证△ADQ≌△ABM得出∠DAQ=∠BAM.再证△QAP≌△MAP得出PQ=PM=DQ+PB故三角形PCQ的周长=CQ+DQ+CP+P
折痕的长13CM连接AP,做AP的垂直平分线交AB于E,交CD于F,交AP于O,过F做FG垂直AB交AB于G因为正方形ABCD所以角B=90度因为EF垂直AP所以角AOE=90度所以角AEF=角APB
∵折叠∴AM=MP设AM=x∵正方形边长=12cm则BM=12-x在直角△BPM中x²=5²+(12-x)²x=169/24AM=169/24cm如果您认可我的回答,请点
连结CP在正方形ABCD中,BD是对角线∴AB=BC,∠ABP=∠CBP=45°,∠C=90°∵BP=BP∴⊿ABP≌⊿CBP(SAS)∴AP=CP∵PE⊥DC于E,PF⊥BC于F∴∠C=∠PFC=∠
让正方形边长为x.所以,AB=BC=CD=AD=X因为,BP=3PC,所以,BP=(3/4)X,PC=(1/4)X因为Q是CD的中点,所以,CQ=DQ=(1/2)CD=(1/2)x所以,左边=AD*C
过点F做FM⊥AB,FM=AB,点A和点P是关于EF为对称轴的对称点,EF⊥AP∠MFE=∠BAP,利用等角的补角相等,△EFM≌△ABP.EF=AP=13
AC与BD的交点叫O∵ABCD为正方形∴AC垂直BD又∵PR⊥BD∴△ERP∽△EOC∴PR/OC=EP/EC,OC=a/2∴PR=a/2乘EP/EC又△CPQ∽△ECO∴PQ/CO=CP/EC,OC
EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,
1、在AB边上选取一点E,使AE=pC,并连接Ep.证明步聚如下:证明:∵AB=CD(已知)AE=pC∴AB—AE=CD—pC∴BE=Bp(等量代换)∴∠BEp=45°∵∠AEp+∠BEp=180°(
过N点做NG⊥BA∵四边形ABCD是正方形∴AD=AB=12设AM的长为X,则BM为12-X∵四边形PMND'是四边形AMND的折叠图形∴AM=PM=X在Rt△BPM中有PB^2+BM^2=PM^22
设折痕为MN(MAB上,N在CD上),连接AP根据题意知,MN垂直平分AP过M作MG//BC交CD于G显然MG=BC=AB而∠NMG+∠AMN=90°,∠BAP+∠AMN=90°所以∠NMG=∠BAP
EF=AP=13cm[作DQ‖FE,Q∈AB,⊿ABP≌⊿PAQ.EF‖=DQ=AP]
连FE交AB的延长线与G,因为BE=EC,角EBG和角ECF都是直角,易证三角形EBG全等于三角形ECF,即GE=EF,BG=CF,则AF=CF+BC=AB+BG=AG,三角形AFG是等腰三角形,又G
作NE垂直于AB于点E,连接AP,由于点A折后落在点P上,所以AP垂直于MN,所以∠PAB+∠AMN=90,又∠MNE+∠AMN=90,所以∠PAB=∠MNE,又NE=AB,∠B=∠MEN,所以三角形
作NE垂直于AB于点E,连接AP∵点A折后落在点P上【即A,P关于MN对称】∴AP垂直于MN∴∠PAB+∠AMN=90°又∠MNE+∠AMN=90°∴∠PAB=∠MNE,在Rt△ABP和Rt△NEM中
--这个题目以后再初三的倒数第二题貌似就经常出现了
哎……简单说就是把△ABP绕A点旋转,使得AP边与AD边重合,做出来的三角形AP'D,证明△AQP和△AP'Q全等具体就是我慢慢说……证明:延长QD至P'使得DP'=BP,连结AP'由于ABCD是正方
BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=
假设正方形边长为1,BP=a,DQ=b,则PQ=a+b,0〈=a〈=1,0〈=b〈=1因为三角形PCQ的周长等于正方形周长的一半所以PQ=BP加DQ因为PQC是直角三角形,所以PC的平方+QC的平方=
设PC=X,则正方形ABCD边长为4X,∴CQ=DQ=2X,∴PC/DQ=CQ*QD=1/2,又∠C=∠D,∴ΔCPQ∽ΔDQA,∴∠PQC=∠DAQ,∵∠DAQ+∠DQA=90°,∴∠PQC+∠DQ