在正方形ABCD中,以A为顶点作角EAF=45度,AE交BC于E,AF交BC于F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:59:20
在正方形ABCD中,以A为顶点作角EAF=45度,AE交BC于E,AF交BC于F
如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且

蛋蛋小崽崽,你好:楼上的几位都做不对,设大圆圆心为E,连接EQ,EP,显然EQ=EP-PQ=5-3=2,延长PQ交AB于G,设AB=2X,则DQ=X=AG,EG=QG-QE=2X-2,AG=X.于是在

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线

(1)A(1,4)由题意知,可设抛物线解析式为y=a(x-1)2+4∵抛物线过点C(3,0),∴0=a(3-1)2+4,解得,a=-1,∴抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3

已知在直角坐标系xOy中,正方形ABCD的顶点A(-1,1),顶点C(1,1+2根号3).那么顶点B、D坐标分别是为

此正方形的对角线长AC=√[(1+1)²+(1+2√3-1)²]=4,边长AB=BC=4/√2=2√2;利用AC的斜率是√3、与x轴夹角等于60°,AB(或AD)与x轴的夹角将是1

如图,在正方形ABCD中,以A为顶点,作∠EAF=45°,AE、AF分别交BC、BD于点E、F,连接EF,作AH⊥ EF

证明,在延长CB的延长线上取点M,使BM=DF,连接AMAB=AD,∠ABM=∠ADF=90°,故,△ABM≌△ADF因此,AF=AM,∠BAM=∠DAF,又,∠EAF=45°,∠BAD=90°,故,

如图,在正方形ABCD中,以A为顶点,作∠EAF=45°,AE、AF分别交BC、BD于点E、F,

证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠E

正方形正方形ABCD的边长为a.操作与计算:将足够大的正方形OMNP的一顶点放在正方形ABCD的对

两个正方形重叠部分四边形OECF的面积就是正方形ABCD面积的1/4=1/4a^2相等证个全等就行了l连结OC和OD因为O是对称中心,所以OC=OD角OCF=角ODE又因为∠EOF=90°∠COD=9

如图,正方形ABCD的顶点A、D和正方形JKLM的顶点K、L在一个以5为半径的圆O上,点J、M在线段BC上,若正方形AB

由题意:半径AO=OK=5有垂径定理可知,AE=AD/2=3所以在三角形AOE中,用勾股定理得OE=4所以OF=AB-OE=6-4=2设正方形JKLM的边长为x同样由垂径定理知KG=x/2在三角形OK

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

正方形ABCD在平面直角坐标系中,AB=4,则顶点A的坐标为?

因为正方形,所以OA=OB,角AOB=90度,勾股,AO=BO=根号2,因为A在x轴的负半轴(y=0),所以A(-根号2,0)

设正方形ABCD的中心为点O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为

如图所示:在正方形ABCD中,O为AC和BD的交点,则所有的三角形分别为:△AOB、△AOD、△BOC、△COD、△ABC、△ACD、△BCD、△ABD,根据正方形的性质,我们知道:△AOB、△AOD

高二空间向量:在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1

第一题ABC1D1是个60度的菱形边长为1.所以对边距离为2分之根号3第二题:三角形ABD1为直角三角形,三边分别为1,根号2,根号3.E为AB中点.将此题化为平面几何来做.很容易比得E到BD1距离:

在平面直角坐标系中,已知点A(0,1)、B(3,5),以AB为边作如图所示的正方形ABCD,顶点在坐标原点的抛物线恰好经

(由于图未给定,那么抛物线的开口方向无法确定,附图中实线为求解所作,虚线为次可能性)       (1)D(﹣4,4); 

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的

此题要把图画对就行了两个圆是内切的,小圆在大圆内,这样就很简单了设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E,设AB=2a(正方形的边长),在直角三角形MAE中,AM^2=ME^2+AE

PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外...

设大圆的圆心为M点,连接MA,MP,延长PQM与AB交于E;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部且与CD切于点Q.∴PQ⊥CD,∵CD∥AB,∴PE⊥AB,∴AE=

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形

设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部且与CD切于点Q.∴PQ⊥CD,∵CD∥AB,∴PE⊥AB,∴AE=

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且

设AH为 x,AB为 2x,△PAK是直角三角形(直径上的圆周角是直角)△APH∽△AHK,∴HK/AH=AH/PH  ,即:HK=10-(3+2x)=7-2x

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且

设大圆的圆心为M点,连接MA,MP,MB,连接PM并延长与AB交于点E,交小圆于Q点,由对称性可知P、Q为切点,E为AB的中点;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于是P,正方形ABCD的顶点A、B在圆上,小圆在正方形的外

做直线PQ,交AB于E,交圆于F.设AB=2x,则有:QE*BE=PE*EFx*x=(10-3-2x)(3+2x)解得:x=3,所以AB=6.第一个回答~给分啊谢谢,辛苦手打的额