在正方形abcd中,点E事AD的中心,链接BE,BF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:13:28
在正方形abcd中,点E事AD的中心,链接BE,BF
如图所示,在正方形ABCD中,∠EBF=45°,E、F分别是AD、DC上的点,

延长EA至H,使AH=FC;连BH;则,AH=FC,AB=BC,∠BCF=∠BAH=90°;三角形BCF与三角形BAH全等;所以BF=BH,∠ABH=∠FBC;∠EAH=∠EAB+∠ABH=∠EAB+

如图所示,正方形ABCD中,点E是AD的中点,点F在DC上且DF=1/4DC

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

正方形ABCD中,点F在AD上,点E在AB上,AE=EB,AF=1/4AD.求证:CE⊥EF

法一:由AF^2+AE^2=EF^2,BE^2+BC^2=EC^2,将AF=1/4AD,AE=BE=1/2AD,BC=AD代入,则EF^2=5/16AD^2,EC^2=5/4AD^2,故EF^2+EC

在正方形ABCD中,点F在AD上,点E在AB的延长线上,且角FCE=90度.

(1)∵∠FCE=∠ADC=∠BCD=90°∴∠FCD=∠ECB,∠FDC=∠EBC又∵DC=BC∴根据三角形全等判定方法中的角边角(ASA)定理,得Rt△FDC≌Rt△EBC∴对应边CF=CE,BE

已知:在正方形ABCD中,点E为AD上一点,BF平分∠EBC,交DC于点F,求证:BE=AE+CF.

延长DA到G,使AG=CF,由于AG=FC,BA=BC,GAB=FCB=90,因此AGB和BFC全等因此GBA=FBC,BGA=BFC由于AB//CD,因此ABF=BFC,得到BGA=ABF,由于BF

如图,在正方形ABCD中,点E在AD上,CF⊥CE于C交AB延长线于点F,正方形ABCD的面积为64,△CEF的面积为5

我大概画了下图形,跟你的一不一样就不知道了,我是找我的图解的CF⊥CE,∠FCE=90°,∠BCD=90°,所以∠FCB=∠ECD(同角的余角相等)又∠CBF=∠CDE=90°,CB=CD,所以△CB

正方形ABCD中.点E在AD边上,且AE=1/4AD,F为AB边的中点,说明△CEF是直角

教你个笨方法,将△CEF中的EF、EC、FC这三边的长度都用AD表示出来然后看这三边是否满足直角三角形中的勾股定理如果满足,则是直角三角形,反之,如果不满足,则不是直角三角形再问:我是过程写不来哇。不

在正方形ABCD中,E,F分别是CD,AD的中点,BE与CF相交于点P,若AP=18,求正方形ABCD的面积.

/>由ABCD是正方形可知AB=BC=CD=AD取BC中点H,连接AH,交BE于点N,则AF=CH=AD又由ABCD是正方形可知AF∥CH,所以AFCH是平行四边形,所以AH∥CF,因为BH=HC,所

在正方形ABCD中,F为CD延长线上一点,CE垂直AF于点E交AD于点M求角,MFD的度数.

看不清为再问:我再照一张再问:再问:者个能不能看清再问:

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图,在正方形梯形ABCD中,AD平行BC,E为CD的中点,EF平行AB交BC于点F.求证BF=AD+CF

过点D作DG∥AB,交BC于G,∵AD∥BC,DG∥AB∴四边形ABGD为平行四边形则AD=BG∵DG∥AB,EF∥AB∴EF∥DG∵E为CD的中点∴EF为△CDG的中位线∴GF=CF∴BF=BG+G

在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C、D重合),AE的垂直平分线FP分别交AD、AE、B

FH=AH×m/12GF=2AH[易知FG=AE]HG=2AH-FH=AH[24-m]/12∴FH/HG=[m/12]/﹛[24-m]/12﹜=m/﹙24-m﹚

在边长为2的正方形ABCD中,点E是AD的中点,点F为CD上一点,EF垂直BE.求证:DEF相似于EBF

∵EF⊥BE∴∠DEF=180°-90°-∠AEB=∠ABE∴直角三角形△ABE∽△DEF∵点E是AD的中点∴AE:AB=DF:DE=1:2∵BE^2=AE^2+AB^2=5,EF^2=ED^2+DF

已知:在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C、D重合),AE的垂直平分线FP分别交AD、A

1)过点G作GQ⊥AD于Q,则QG=AB=AD=12,∠FQG=∠D=90°∵∠QFG+∠DAE=∠AED+∠DAE=90°,∴∠QFG=∠AED∴△QFG≌△AED∴FG=EA,FQ=DE=m∵FP

已知如图,正方形ABCD中,点E在AD边上,且AE=四分之一AD,F为AB中点,求证:△CEF是直角三角形

设正方形边长为x,那么AE=0.25X;DE=0.75X;AF=0.5X;BF=0.5x;BC=x;CD=x.在三角形AEF中EF平方=0.25x平方+0.5x平方=0.3125x平方在三角形BCF中

在正方形ABCD中,点E在AD边上,且AE=1/4AD,F为AB重点,求证:△CEF是直角三角形

证明:AE=(1/4)AD   AF=BF=(1/2)AB         &n