在正方形ABCD中,点F为CD上一点,AF交BD于H
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:04:18
∠AFD=90º-∠ECF=∠DMC ⊿AFG≌⊿CMD(AAS),MD=FD,∠MFD=45º
解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三
延长EC至F'使CF'=AF,连BF'则容易证明两个直角三角形BAF和BCF'全等所以,∠ABF=∠CBF'BF=BF'BE=BEEF'=EC+CF'=EC+AF=EF所以,△FBE≌△F'BE所以,
显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG
证明:作一边为AD顶点为A 角度等于∠BAE的角 并交CD的延长线于M点 AE平分∠BAF所以 角BAE=∠EAF=MAD 另根据四边形A
∵ABCD是正方形,∴AD=AB,∠D=∠B=90°,AB∥CD,∴∠AFD=∠BAF,将ΔADF绕点A旋转90°到ΔABG,则DF=BG,∠G=∠AFD=∠BAF=∠BAE+∠EAF,∵AF平分∠E
过点F做FM⊥AB,FM=AB,点A和点P是关于EF为对称轴的对称点,EF⊥AP∠MFE=∠BAP,利用等角的补角相等,△EFM≌△ABP.EF=AP=13
2、证明:将△ABE绕点A旋转,使AB与AD重合,旋转后点E的对应点为I,过点H作HP⊥BC于P,HQ⊥AB于Q,过点G作GK⊥CD交DC延长线于K∵正方形ABCD∴AD=AB=CD,∠BAD=∠AD
等一下再问:恩再答:45再答:要过程么再问:要再问:在么再问:我会了再答:好吧(∩_∩)再问:再问你个题再答:发吧?怎么不发再问:你去问题里找找吧我发那里面去了
延长DC至E′,使CE′=AE连接BE′∴就有AE=CE′∴在△BAE、△BCE′中就有:BA=BC、∠BAE=BCE′=90°、AE=CE′∴△BAE≌△BCE′(SAS)∴∠ABE=∠CBE′又∵
看不清为再问:我再照一张再问:再问:者个能不能看清再问:
我只想出来计算比较麻烦的令边长=1,设BE=x,DF=yDF/AD=tanFAD=yBD/AB=tanBAE=x2FAD+BAE=90度tan(2FAD)=1/tan(BAE)2y/(1-y^2)=1
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
过点D作DG∥AB,交BC于G,∵AD∥BC,DG∥AB∴四边形ABGD为平行四边形则AD=BG∵DG∥AB,EF∥AB∴EF∥DG∵E为CD的中点∴EF为△CDG的中位线∴GF=CF∴BF=BG+G
顺时针旋转ADF90度至ABF'(AD与AB重合),连接EF,易证EF=EF',勾股定理易求BE=1/2设DF=xEF^2=EF'^2=(1/2+x)^2=(1-1/2)^2+(1-x)^2x=1/3
EG=DGEF=CGEG+EF=正方形边长aABCD周长=4a=16a=4SOEFCG周长=2a=8
∵EF⊥BE∴∠DEF=180°-90°-∠AEB=∠ABE∴直角三角形△ABE∽△DEF∵点E是AD的中点∴AE:AB=DF:DE=1:2∵BE^2=AE^2+AB^2=5,EF^2=ED^2+DF
∵正方形面积为3,∴AB=√3在△BGE与△ABE中, ∵∠GBE=∠BAE, ∠EGB=∠EBA=900∴△BGE∽△ABE &nb
图子这里发不了,我直接告诉你怎么写:将三角形ADF沿着A点旋转至AB(把那个新的点叫做“H”)∵BE+DF=FE∴BE+BH=BE+DF=EH=EF在⊿AFE和⊿AEH{AH=AF{AE=AE{EF=