在正方形abcd中bc=2ab点m是BC边上任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:49:20
连接de,df,将三角形dae以D为旋转中心顺时针旋转90度,E落在BC延长线上H所以DE=DH,因为ae+cf=efae=ch所以ef=cf+ch即ef=fhde=dh,ef=fh,df=df三角形
角B=角C,同时CD/BE=CE/BF所以△DCE∽△EBF可知角CED=角BFE=90度-角BEF即角CED+角BEF=90度所以∠FED=90°
如果是这样的话,EF=根号74而ED=根号65当EF=EH时,必定使H不在AD边上所以a=5不存在再问:没看懂再答:如果BF是5,BE是7,那么EF的长就是根号74那是一个菱形,所以EH也是根号74,
解题思路:本题主要考查对直角三角形斜边上的中线,平行四边形的性质和判定等知识点的理解和掌握,能求出AF=DF=EF是解此题的关键解题过程:最终答案:90度
FC/CD=AB/BC=﹙√5-1﹚/2FC/CD=AB/BC,这才是黄金分割矩形的定义,AB/BC=﹙√5-1﹚/2是结果.
在正方形ABCD中∵DF⊥AE∴∠DFE=∠DFA=90°∴∠DAF+∠ADF=90°∵∠B=90°∴∠BAE+∠BEA=90°∵∠DAB=90°∴∠BAE+∠DAE=90°∴∠DEA=∠DAE∴∠B
用勾股定理和逆定理:设AB=4,则BE=EC=2,BF=1,AF=3用勾股定理可求:EF=√5,DE=√20,DF=5故EF的平方+DE的平方=DF的平方∴角FED=90度
(1)∵四边形ABCD是正方形,∴AD∥BC,∠B=90°,∴∠DAP=∠APB,∵DQ⊥AP,∴∠AQD=90°,∴∠B=∠AQD,∴△DAQ∽△APB;(2)∵△DAQ∽△APB,∴DQAB=DA
令BF=a则BE=AE=2aAD=4a所以DE=2√5aEF=√5a直角三角形CFD中CF=4a,CF=3a所以DF=5a所以DF²=DE²+EF²所以角DEF是直角所以
证明:∵ABCD是正方形∴AD=AB=BC,∠A=∠B=90º∵AE=BE=½ABBF=¼BC∴AE/AD=BF/BE=½又∵∠EBF=∠DAE=90º
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
可以因为AD=2AE,BE=2BF所以三角形AED相似于三角形BFE所以角AED+角BEF=90度所以角DEF是直角.所以三角形DEF是直角三角形.
过点D作DG∥AB,交BC于G,∵AD∥BC,DG∥AB∴四边形ABGD为平行四边形则AD=BG∵DG∥AB,EF∥AB∴EF∥DG∵E为CD的中点∴EF为△CDG的中位线∴GF=CF∴BF=BG+G
结果是18设AB=x,BP=y,则BC=2x,对直角三角形PCD列勾股定理的式子:(x+y)的平方=x的平方+(2x-y)的平方;得到x/y=3/2;也就得到tan
在正方形ABCD中AD=AB=4,∠A=∠B=90°∵AM=1,BN=0.75∴BM=3∴AD/AM=BM/BN=4∴⊿ADM∽⊿BMN∴∠ADM=∠BMN∵∠ADM+∠AMD=90°∴∠BMN+∠A
(1)证明:作PB中点Q,连结AQ.DQ.EQ因为点Q.E分别是PB.PC的中点所以EQ//BC又AD//BC,则EQ//AD即点A.D.E.Q四点共面因为PD⊥平面ABCD,所以PD⊥AD又在底面正
找到取AD中点H,连接FH,∵PE:EC=PF:FD=1:1∴EF‖CD在正方形ABCD中H、G是对边中点HG//CD∴EF//HG所以EFHG在一个平面,又AH:HD=DF:FP=1:1则FH‖PD
第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5
(1)证明:E,G分别是PC,BC的中点得EG∥PB∴EG∥平面PAB又E,F分别是PC,PD的中点,∴EF∥CD,又AB∥CD∴EF∥AB∵EF⊈p平面PAB,AB⊆平面PAB∴EF∥平面PAB又∵
1)作EF⊥AC于F因为AE是角BAC的平分线所以,AF=AB,EF=BE∠FEC=90-∠ACB=90-45=45所以,∠FEC=∠ACBEF=CFAB+BE=AF+EF=AF+CF=AC2)∠C=