在正方形ABCD的内部有一点P,若正方形的边长为2,求PA PB PC的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:33:34
在正方形ABCD的内部有一点P,若正方形的边长为2,求PA PB PC的最小值
如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

在正方形ABCD内有一点P,且PA=根号五,BP=根号二,PC=1.求和正方形ABCD的边长

把△BPC绕B点逆时针旋转90°到BP'A的位置,∠PBP'=90°   BP=BP'=√(2)∴PP'=2P'A=PC=1PA=

在正方形abcd内有一点p,pa:pb:pd=1:2:3,求:cpd的度数?

过B作BE垂直PB,使BE=PB,连接AE,PE因为正方形ABCD所以角ABC=90度,BA=BC因为BE垂直PB所以角EBP=90度所以角ABE=角CBP因为BE=PB,BA=BC所以三角形ABE全

如图正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P.求:EP+BP的最短距离

设正方形ABCD,E在AB上,AE=3,BE=1,(AB=AD=4)在AD上取一点F,使得AF=3,所以E,F关于AC对称.连BF,交AC于P,连PE,∵AE=AF,∠EAC=∠FAC,AP是公共边△

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

正方形ABCD面积为12 三角形ABC是等边三角形 点E在正方形ABCD内 在对角线AC上有一点P,使PD+PE的和最小

根号下12再问:能给详细的做法吗?再答:连接PB,PD=PB,所以PB+BE的最小值就是BE.

正方形ABCD的面积为10,三角形ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最

有正方形ABCD的对称性可知PD=PB所以PD+PE=PB+PE当P为AC与BE交点时,PB+PE最小,且PB+PE=BE因为三角形EBC是等边三角形所以BE=BC=10所以PD+PE的最小值为10

正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,

d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的

有一个地方不懂如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

因为对称所以PD+PE=PB+PE这样看没问题吧然后在△PBE中,两边之和大于第三边所以只有PB,PE在一条直线上才能使PB+PE最小因为P是任意一点所以这个时候P点应为BE与AC的交点.

如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BDAB=AD=A=BC=CD=√16=4∵△ABE是等边三角形∴AB=BE=AE=4要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对称点恰好是B

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使

如图,正方形边长为4,D的对称点为B,△ABE是等边三角形,所以PD+PE=D'E=4

在正方形ABCD内有一点p,已知PA=根号5,PB=根号2,PC=求∠BPC的度数,及正方形ABCD 的边长

这是一道应该用“旋转思想”解决的问题.如图,将△BPC绕点B逆时针旋转90°到△BMA,则BM=BP=√2,AM=PC=1,∠MBP=90°,∠BPC=∠BMA∴△MBP是等腰直角三角形∴PM=2,∠

在正方形ABCD中有一点P,联结PA,PB,PC,且PA=1,PB=2,PC=3,求正方形ABCD的面积

本题用旋转法可以巧解.将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2,QA=PC=3,∠ABQ=∠PBC,由于∠PBC+∠ABP=90°,所以∠PBQ=∠