在正棱锥v-abc中,已知底面边长等于6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:34:57
(1)设内接正三棱柱的高为x,底面的边长为a,由直角三角形相似得15−x15=23×32a23×32×12,∴a=60−4x5,内接正三棱柱的侧面积为:120=3a•x=360−4x5 x,
连接BD,交AC于G,连接VG,知VG垂直于平面ABCD(因为是正四棱锥).故GD为VD在平面ABCD的投影.又知AC垂直于BD即:AC垂直于GD.故由三垂线定理知AC垂直于VD.证明完毕(原题中的:
貌似是条件缺少,无解
证明:1.连结AC.BD,交于点O,连结MO易知点O是BD的中点又点M是SD的中点,则在△SBD中有:OM//SB因为OM在平面ACM内,SB不在平面ACM内所以由线面平行的判定定理可得:SB//平面
棱锥S-ABC的底面边长为4,高为3,在正棱锥内任取一点P,当VP-ABC=1/3VS-ABC设P-ABC的高为h,S-ABC的高为H那么h=1/3H,此时P点在原棱锥高的1/3处,在此处做棱锥的一个
沿着BA剪开,侧面展成一个平面图形,点B对应的另一点是B',BB'分别与AC,AD相交于E,F.则BB'的长就是 △BEF的周长的最小值,要计算BB'长,必须
∵两个正四棱锥有公共底面且两个正四棱锥的体积之比为1:2,∴两个正四棱锥的高的比也为1:2设两个棱锥的高分别为X,2X,球的半径为R则X+2X=3X=2R即R=3X2球心到那个公共底面距离是X2,又∵
正四棱锥V-ABCD中,连接AC,过V做底面垂线,交AC于O,O为底面正方形中心在平面VAC内,连接EO,O为中心,所以EO为中位线,所以EO//AV,那么∠BEO就是异面直线BE与VA所成角,在三角
画好图形对照图形阅读下列内容:设棱长为2连接EO,因为EO是三角形BSD底边SD的中位线,所以EO//SD,则∠AEO即为AESD所成的角,并且EO=1;三角形SAB是等边三角形,所以AE=√3;OA
底面是正方形,侧棱长是相等的,顶点到底面的距离即高,可根据勾股定理得知为二根号下七,一侧面的高,有勾股定理可知为8,以此可求侧体积
再答:看这个图再答:ve=3一个侧面得面积=1/2*3*4=6再答:所以全面积为16+24=40再答:亲,你的问题已经回答完毕,如有不明白你可以继续问我,如满意的话请点一下右上角【采纳回答】,答题辛苦
底面积是16可知底面边长为4又因为侧棱长为2√11所以顶点到底面的高为6凌锥的体积计算公式为(1/3)*底面积*高所以V=1/3*6*16=32
再问:怎么求出BP再答:
(1)作AF⊥CD于F,连接VF即为v到F的距离因∠D为60°,AD=4∴AF=2倍根号3又VA=3勾股定理得VF=根21(2)∵VA⊥面ABCD∴VA⊥BDVA⊥AO又ABCD为菱形,故AO⊥BD∴
连接AC,交BD于O,连接VO∵四边形ABCD是正方形,∴AC⊥BD,O为BD的中点又∵正四棱锥V-ABCD中,VB=VD∴VO⊥BD∵AC∩VO=O,AC、VO⊂平面ACV∴BD⊥平面ACV∵VA⊂
证明:连接AC,交BD于O,连接MO∵四边形ABCD是正方形∴AO=CO∵M是VC的中点∴MO是△VAC的中位线∴MO//VA∵MO在面BDM内∴VA//平面BDM
底面是正方形边长是4由侧棱和一半长的对角线可以勾股定理求出高是6由侧棱和一半底面边长可以勾股定理求出斜高是2根号10
1.底面边长等于6,AD=3√3OD=√3∠VDO=60°,VO=3SABC=1/2*BC*AD=9√3V=1/3*VO*SABC=9√32.VD=2OD=2√3DC=3VC^2=CD^2+VD^2=