在直角三角形中斜边的一半

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:11:01
在直角三角形中斜边的一半
直角三角形斜边上的中线等于斜边的一半 证明

第一个和第二个不是一样吗?帮你证明每一个好了.直角三角形斜边上的中线等于斜边的一半证明:在直角三角形ABC中D是AB的中点.连结AD作CE垂直于AC于E作BE垂直于ABG于ECE与BE相交于E因为角B

请写出定理“在直角三角形中,30°角所对的直角边是斜边的一半”的逆命题,判断逆命题的真假,并证明.

楼上别扯淡了~您老整的题目就是原来的命题啊~逆命题:“在一个三角形中,如果有一个角是30°,且这个角所对的边是其一条邻边的一半,那么这个三角形是直角三角形,这条邻边为斜边.”(差不多吧……好久没做这样

在直角三角形中 30度角所对直角边是斜边的一半 判断逆命题的真假

真在三角形ABC的斜边上取点D,使得角CBD=30度又角B=90度,所以角ABD=60度因为角A=角ABD=60度,所以三角形ABD为等边三角形所以AB=AD又因为角C=角CBD=30度所以三角形BC

直角三角形中30°角所对直角等于斜边一半的逆定理如何证明?

直角三角形中30°角所对直角等于斜边一半的逆定理为:如果直角三角形中一直角边是斜边的一般,那么这条直角边所对的角等于30度.证明: 如图,三角形ABC是直角三角形,AB是斜边,D是AB的中点

证明:直角三角形中,30°的角所对的边等于斜边的一半.

证明:如图,延长BC到D,使CD=BC,在△ABC和△ADC中,AC=AC∠ACB=∠ACD=90°BC=CD,∴△ABC≌△ADC(SAS),∴AB=AD,∵∠BAC=30°,∴∠B=90°-30°

请说出定理"在直角三角形中,30度角所对的直角边是斜边的一半"的逆命题,判断此命题的真假,理由

在一三角形中,一锐角为三十度,其所对的一边为一邻边的一般,则此三角形为直角三角形.在该三角形旁做一个三角形构成正三角形,证明两个三角形全等,有等腰三角形底边上的高垂直与底边得直角

直角三角形斜边上的高等于斜边的一半吗?

斜边的中线是斜边的一半只有等腰直角三角形和等边三角形才是一半其他情况斜边上的中线不等于斜边上的高!

本节我们学了定理“直角三角形斜边上的中线等于斜边的一半”,即:如图甲,在Rt△ABC中,∠ACB=90°

①证:CD为rt△ABE的中位线,则CD=½AE;∵rt△ABC≌rt△AEC(二直角边相等),则AE=AB;∴CD=½AB.②证:ED是rt△ABC的中位线,则DE∥AC,∠DE

直角三角形中,30度的角对的直角边等于斜边的一半

直角△ACB,∠A=30°,∠C=90°,∠B=60°.求证BC=½AB.证明:从顶点C做一条辅助线交斜边AB于D点,使得∠ACD=30°,那么AD=CD;   

怎证明在直角三角形中,30度角所对的直角边是斜边的一半.

很简单呀.给我追加10分就好在三角形ABC的斜边上取点D,使得角CBD=30度又角B=90度,所以角ABD=60度因为角A=角ABD=60度,所以三角形ABD为等边三角形所以AB=AD又因为角C=角C

在直角三角形中30度角所对直角边等于斜边的一半,但当直角边分别为3和4时斜边就为5

直角三角形三条边符合勾股定理三边长为345时符合勾股定理,可是此时角度不是30度所以当一个角度是30度时两直角边不是3和4

怎么证明“在直角三角形中,30度角所对的直角边是斜边的一半”的逆命题

过A作AD⊥BC于点D,∵∠B=30°,∴AD=1/2AB=AC,根据垂线段最短可知AD与AC重合,因此∠C=90°

怎样证明1.直角三角形中30度角对的直角边等于斜边的一半.2.直角三角形中斜边的中线等于斜边的一半

2、ΔABC是直角三角形,作AB的垂直平分线n交BC于D∴AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)以DB为半径,D为圆心画弧,与BC在D的另一侧交于C'∴DC’=AD=BD∴∠BA

直角三角形中30度角对应的直角边等于斜边的一半有没有逆定理?

有,这本来就是充要条件.将斜边中点与直角顶点连接,用等腰三角形和三角形的内角和定理就可证明.

直角三角形的定理证明1、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半; 2、在直角三角形中

1.2.两题都可以再等三角形中进行证明.作等边三角形一边上的高,由三线合一就可以证明了.3.在圆中,直径所对的角是直角,这时直角三角形的斜边就是直径,斜边上的中线就是半径,即中线等于斜边的一半