在矩形abcd中 m是ad的中点,ce垂直于BM,垂足为E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:34:49
证明:(1)设PD的中点为E,连接AE、NE,由N为PC的中点知EN∥.12DC,又ABCD是矩形,∴DC∥.AB,∴EN∥.12AB又M是AB的中点,∴EN∥.AM,∴AMNE是平行四边形∴MN∥A
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
关键是知道折痕是AM的垂直平分线假设AM交EF于O,很容易证明△AOE相似于△ADM,于是:AE/AO=AM/AD因为AO=(1/2)AM,所以AE=(1/2)AM^2/AD=(1/2)*(AD^2+
因为AM⊥DM,可知AM=DM,则有三角形AMD为等边直角三角形,则AB=BM,画图易得AB为短边,AD为长边,且2AB=AD,则AB=8,AD=16,面积为8*16=108
AD=2AB成立.证明如下:因为,在△ABM和△DCM中,AB=DC,∠ABM=90°=∠DCM,BM=CM,所以,△ABM≌△DCM,可得:∠AMB=∠DMC=(180°-∠AMD)/2=45°;因
取CD中点H,连结MH、NH,PA⊥平面ABCD,PA⊥AB,AM=BM,PN=CN,△AMP≌△BCM,MC=PM,△PCM为等腰△,MN⊥PC,PA⊥CD,CD⊥AD,CD⊥平⊥CD面PAD,
如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则三角形APN的面积y与点P经过.经过什么
考点:平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的性质专题:证明题分析:(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行即可,设PD的中点
连接EF,△ABE∽Rt△DEF∵在Rt△GED与RtRt△DEF中,GE=AE=DEEF=EF∴△GED≌△DEF【HL】∵∠BEA=∠BEG,∠FEG=∠FED,∠AED=180°∴∠BEA+∠F
证明:取PD的中点E,PC中点F,连接AE,EF,FM∵PA⊥平面ABCD∴PA⊥AD,PA⊥CD∵ABCD是矩形∴CD⊥AD∴CD⊥面PAD∴CD⊥AE∵PA=AD∴△PAD是等腰直角三角形∵E是P
1做好图做CD中点E连接MENE分别证明ME‖PADNE‖PADMNE‖PAD所以MN‖PAD2取PD中点F连接AF因为PA=BC=ADPAD是等腰直角三角形所以AF垂直PD证明CD垂直面PAD所以A
1、因为BM=MC所以∠MBC=∠MCBAD∥BC,所以∠AMB=∠DMC2、AM=MD,BM=MC,∠AMB=∠DMC三角形两条边及夹角相等,这两个三角形就是全等三角形△ABM≌△DCM所以∠BAM
作△CBE的中线EF,交BC为F;根据等边三角形三线合一,EF⊥BC,又四边形ABCD是平行四边形,所以EF//AB//CD,所以∠ABC=90°,有一个角是90°的平行四边形是矩形.
前两问用向量法解比较简便1.建立坐标系,以D为原点,DA为X轴,DC为Y轴,DP为Z轴则各个点的坐标为P(0,0,√2),A(√2,0,0),B(√2,1,0),C(0,1,0)由中点关系,易知M,N
它是一个菱形,再问:ok再答:连MN易得MN⊥BC∴P是直角三角形MNB斜边上的中点∴PM=MP∵DM//=BN∴四边形MDNB是平行四边形∴MB=ND,MB//ND∵MP=MB/2NQ=ND/2∴M
证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=12AD,CN=12BC,∴AM=CN,在△MAB和△NDC
答:菱形证明:连结MN首先ABNM,MNCD为矩形,这应该会证吧那么AN=BMME=MB/2NE=AN/2所以ME=EN同理MF=FN又因为∠AMN=90,M为AD中点所以MN为AD中垂线所以AN=N
图再问: 再答: 再问:有没有想出啊再答:采纳吧再问:嗯