在等差数列中,s15=60,那么a8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:15:29
在等差数列中,s15=60,那么a8
等差数列an、s7=7.s15=75.tn为{sn/n}的前n项和,求tn、

a1+a7=2a1+a15=10所以:a15-a7=8d=8得:d=1a1+a7=a1+a1+6d=22a1+6=2得:a1=-2Sn=n²/2-5n/2Sn/n=n/2-5/2,等差数列S

{an}是等差数列 S7=7 S15=75 Tn是数列{Sn/n}的前n和 求Tn

设an=a1+(n-1)d在S7=a1n+n(n-1)d/2=7a1+21d=7同理,S15=15a1+105d=75联立解得a1=-2,d=1所以Sn=-2n+n(n-1)/2所以{Sn/n}=-2

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n=______时,Sn取得最大值.

∵S10=S15,∴a11+a12+a13+a14+a15=0,∴5a13=0,∴a13=0,∵a1=20,∴d=a13−a113−1=-53,∴Sn=20n+n(n−1)2•(−53)=−56(n−

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15(1)求前n项和Sn因为an是等差数列,所以S10=(a1+a10)*10/2=(2a1+9d)*5=10a1+45dS15=(a

在等比数列{an}中,a1+a2+a3=8,a4+a5+a6=-4,求a13+a14+a15及s15

a1+a2+a3=8a4+a5+a6=-4a1q^3+a2q^3+a3q^3=-4q^3(a1+a2+a3)=-4q^3=-1/2a13+a14+a15=a1q^12+a2q^12+a3q^12=q^

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求n取何值时,Sn有最大值,并求出最大值

sn=na1+n(n-1)d/2;(1)s10=200+45d=s15=300+105d;推得d=-5/3;代入(1)得:sn=20n-5n(n-1)/6=-5(n-12.5)^2/6+3125/24

1.在等差数列中,前15项之和S15=60,则a8=?

1.60/15=42.(120*2)/10=243.{(25+78+100)*100}/2=10000

已知等差数列{an}中a3+a13=8,求S15

2a8=a3+a13.所以a8=4.S15=15*a8.所以S15=60

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值

﹛an﹜是等差数列Sn=na1+n(n-1)d/2=d/2n²+(a1-d/2)n对称轴是n=(a1-d/2)/(-d)=(d/2-a1)/d∵S10=S15∴对称轴是n=(10+15)/2

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最

a13=0S13=S12+a13=S12是求Sn的最大值不是求an,这样,S12和S13是相等的,两个都取到最大值.

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出他的最大值

﹛an﹜是等差数列Sn=na1+n(n-1)d/2=d/2n²+(a1-d/2)n对称轴是n=(a1-d/2)/(-d)=(d/2-a1)/d∵S10=S15∴对称轴是n=(10+15)/2

等差数列an的前n项和Sn,S5=5,S10=15,则S15=

利用结论:S5、S10-S5、S15-S10仍是等差数列∴2(S10-S5)=S5+(S15-S10)∴2*10=5+(S15-15)∴S15=30

等差数列{an}中,S5=28,S10=36 (Sn为前n项和),则S15等于?

s5=5a1+10d=28s10=10a1+45d=3610a1+20d=5610a1+45d=3625d=-20得到d=-4/5a1=36/5s15=15a1+105d=108-84=24答案错了

在等差数列{an}中,已知sn是其前n项和,且a1一a4一a8一a12十a15=2,则s15=

a1+a15=a2+a14a8=-2S15=-2*15=30再答:-30再问:为什么s15=一2x15再答:因为等差数列之和等于首项加尾项*项数/2,因为此数列为15项,为奇数项,所以第八项为中间项,

6.在等差数列{ an}中,已知 s15=90,那么a8 等于 A、3 B、4 C、6 D、12

等差数列Sn=(a1+an)*n/2所以S15=(a1+a15)*15/2而在等差数列中又有2an=ax+a(2n-x)这里的2a8=a1+a15因此S15=a8*15a8=6

在等差数列{an}中,a1=-60,a17=-12

第1问:d=(a17-a1)/(17-1)=(-12+60)/16=3an=a1+(n-1)d=-60+3(n-1)=3n-63第2问:设an≥0则3n-63≥0n≥21所以该数列前20项均为负,从2

在等差数列{an}中,Sn为其前n项和,已知S7=7,S15=75,令Tn为数列{Sn/n}的前n项和,则Tn=?

由等差数列求和公式可直接得出an的通项公式为an=n-3,则Sn=(n^2-5n)/2,Kn=Sn/n=(n-5)/2,又是一个等差数列~由求和公式可得Tn=(n-9)n/4~用手机打的而且是心算的,

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn有最大值,求出最大值

S10=S15a11+a12+a13+a14+a15=0a13=0a1=20d=(a13-a1)/(13-1)=-20/12=-5/3an=20-(n-1)5/3Sn=(1->n)∑ai=n*20-5

等差数列An中A1-A4-A8-A12+A15=2求A3+A13及S15

a1-a4-a8-a12+a15=2∵a1+a15=a4+a12a1+a15=a4+a12+a8+2所以a8+2=0得a8=-2a3+a13=2a8=2*(-2)=-4s15=a1+a2+.+a15=

等差数列{an}中,a1=17,S3=S15,问此数列前多少项和最大?并求出此最大值.

s3=s153a2=15a8a2=5a8a1+d=5(a1+7d)4a1=-34d4*17=-34dd=-2an=a1+(n-1)d=17-2(n-1)=19-2n>02n再问:这个方法我知道的,只是