在等边三角形abc中,bc=6,点d,e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:21:52
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
AB的平方等于AC平方加BC平方 得出AB=20从D点做三角形ABD的高 DE AE=10 DE的平
证明:∵向量AB.BC=CA·AB--(1)AB=AC+CB--(2)(2)代入(1)(AC+CB)·BC=CA·(AC+CB)∴AC·BC+CB·BC=-AC·AC+AC·BC由上式得到|BC|=|
由题意得:△ABD≌△ECD,∠ADE=60°所以AD=ED,AB=EC所以△ADE为等边三角形,所以AE=AD=DE,∠DAE=60°因为∠BAD+∠CAD=∠BAC=120°∴∠BAD=60°又∠
阴影部分应该是△FBH解析:连接△ABC各边中点,则△ABC被分成了大小相等的四个小三角形.在△DBG中,再连接各边中点,得出将△DBG又分成了四个很小的三角形.经观察,容易得出△ABC的面积为(1×
记向量AB*向量BC=向量BC*向量CA=向量CA*向量AB=k则|AB|²=向量AB*向量AB=向量AB*(向量AC+向量CB)=向量AB*向量AC+向量AB*向量CB=-向量AB*向量C
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,
因为向量AB·向量BC=向量CA·向量AB--(1)向量AB=向量AC+向量CB--(2)(2)代入(1)(向量AC+向量CB)·向量BC=向量CA·(向量AC+向量CB)向量AC·向量BC+向量CB
∵△BCF,△ACE,△ABD是等边三角形.∴∠BCF=∠ACE,∠FBC=∠DBA∴∠BCF-∠ACF=∠ACE-∠ACF即∠ACB=∠ECF∠FBC-∠FBA=∠DBA-∠FBA即∠ABC=∠DB
1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角
证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA
三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°
三角形ABC的边长为3
∵CD=CE∴∠CDE=∠E∵DE=DB∴∠E=∠DBE,∠ACB=2∠E∵BD平分∠ABC∴∠ABC=2∠E∴∠ABC=∠ACB∴AB=AC∴△ABC是等腰三角形(请看原题.若∠A=∠ABC,则△A
解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程:
设边长为X,由此可知三角形DEF的高为2分之根号3X,由DE平行于BC可得,(3倍根号3-2分之根号3X)/3倍根号3=X/6,解得X=3,故三角形DEF的边长为3
因为ADE是六十度,AD等于DE(旋转过去的),所以ADE三角形是等边的,AD等边于AE等于AC+CE=AC+AB=5因为角DAC是六十度,所以BAD等于120-60=60度