在等边三角形abc中,bc=6,点d,e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:21:52
在等边三角形abc中,bc=6,点d,e
【如图,已知在等边三角形ABC中,D是BC边上一点...

∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN

如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧做等边三角形ABD,等边三角形ACE,等边三角形BCF

因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

在直角三角形ABC中∠c=90,AC=12,BC=16,以AB为等边三角形另一边,向外作一等边三角形ABD,求出S三角形

AB的平方等于AC平方加BC平方  得出AB=20从D点做三角形ABD的高 DE    AE=10  DE的平

在△ABC中,若向量AB*BC=BC*CA=CA*AB,证明△ABC是等边三角形.

证明:∵向量AB.BC=CA·AB--(1)AB=AC+CB--(2)(2)代入(1)(AC+CB)·BC=CA·(AC+CB)∴AC·BC+CB·BC=-AC·AC+AC·BC由上式得到|BC|=|

在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD

由题意得:△ABD≌△ECD,∠ADE=60°所以AD=ED,AB=EC所以△ADE为等边三角形,所以AE=AD=DE,∠DAE=60°因为∠BAD+∠CAD=∠BAC=120°∴∠BAD=60°又∠

在等边三角形ABC中,AF=3FB,FH垂直于BC,已知阴影部分的面积为1平方厘米,这个等边三角形的面积是多少平方厘米?

阴影部分应该是△FBH解析:连接△ABC各边中点,则△ABC被分成了大小相等的四个小三角形.在△DBG中,再连接各边中点,得出将△DBG又分成了四个很小的三角形.经观察,容易得出△ABC的面积为(1×

在三角形ABC中,若AB向量乘以BC向量=BC乘以CA向量=CA向量乘以AB向量,证明三角形ABC是等边三角形

记向量AB*向量BC=向量BC*向量CA=向量CA*向量AB=k则|AB|²=向量AB*向量AB=向量AB*(向量AC+向量CB)=向量AB*向量AC+向量AB*向量CB=-向量AB*向量C

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形

1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)

如图,在等边三角形ABC中,线段AM为BC上的中线

(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,

在三角形ABC中,若向量AB·向量BC=向量BC·向量CA=向量CA·向量AB,证明三角形ABC是等边三角形

因为向量AB·向量BC=向量CA·向量AB--(1)向量AB=向量AC+向量CB--(2)(2)代入(1)(向量AC+向量CB)·向量BC=向量CA·(向量AC+向量CB)向量AC·向量BC+向量CB

在三角形ABC中,分别以AB,BC,AC为边在BC的同侧做等边三角形ABD和等边三角形ACE,等边三角形BCF,说明四

∵△BCF,△ACE,△ABD是等边三角形.∴∠BCF=∠ACE,∠FBC=∠DBA∴∠BCF-∠ACF=∠ACE-∠ACF即∠ACB=∠ECF∠FBC-∠FBA=∠DBA-∠FBA即∠ABC=∠DB

如图,在等边三角形ABC中,D是BC上一点,以AD为边作等边三角形ADE,连接EC

1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角

在等边三角形ABC中 点D在BC的延长线上 CE平分 角ACD 且CE=BD 求证 三角形ADE是等边三角形

证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA

在等边三角形ABC中D.E分别为BC CA上的点且BD=CE

三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°

关于等边三角形在三角形ABC中,BD平分∠ABC,延长BC到E,使CE=CD,连接D、E 若BD=DE,那么三角形ABC

∵CD=CE∴∠CDE=∠E∵DE=DB∴∠E=∠DBE,∠ACB=2∠E∵BD平分∠ABC∴∠ABC=2∠E∴∠ABC=∠ACB∴AB=AC∴△ABC是等腰三角形(请看原题.若∠A=∠ABC,则△A

如图,在等边三角形abc中,点p,q分别在ac,bc上,且a

解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程:

如图,在三角形ABC中,BC=6,高AH=3倍根号3,等边三角形DEF内接于三角形ABC,且DE平行于BC,求三角形DE

设边长为X,由此可知三角形DEF的高为2分之根号3X,由DE平行于BC可得,(3倍根号3-2分之根号3X)/3倍根号3=X/6,解得X=3,故三角形DEF的边长为3

如图,在三角形ABC中,∠BAC=120°,以BC为边向形外做等边三角形BCD,把三角形ABD绕着点D按顺时针方向旋转6

因为ADE是六十度,AD等于DE(旋转过去的),所以ADE三角形是等边的,AD等边于AE等于AC+CE=AC+AB=5因为角DAC是六十度,所以BAD等于120-60=60度