在等边三角形abc中点的分别在边bcac上 bd=ce

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:17:36
在等边三角形abc中点的分别在边bcac上 bd=ce
如图,在等边三角形ABC中,M,N分别是边AB,AC的中点,D为MN上任意一点,CD,BD的延长

过点D作DS∥BM,DT∥CN交BC于S、T,易证MDSB、NDTC都是平行四边形,∵M、N是中点∴MN=1/2BCMD+DN=1/2BCBS+TC=1/2BC∴ST=1/2BC∵△DST是等边三角形

在△ABC中,AB=AC,∠BAC=120°.D,F分别是AB,AC的中点,E,G在BC上,△AEG是等边三角形.求证D

△ABC中AB=AC,且角BAC=120°∴∠B=∠C=30°又∵AEG为等边△∴∠AEG=∠AGE=60°则∠AEB=∠AGC=120°△ABE和△AGC中,已知两个角,可以求出第三个角即∠BAE=

如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧做等边三角形ABD,等边三角形ACE,等边三角形BCF

因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边

已知△ABC为等边三角形,D为AB的中点,E在AC上,CE

这里是一个纯代数的证明,抛砖引玉,希望有更加简单的证明,仅供参考再问:这个题目是初一学生的作业,怎么可能用这么复杂的方法来解答?请问你还有简单的方法吗!?再答:不好意思,不知道这个题目的背景,初中离得

8.已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、A

2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为(  )A、B、C、D

如图,在等边三角形ABC中 M N分别为AB AC上的中点 点D为MN上任意一点 BD CD的延长线分别交AC AB于点

延长BE,CF交过A的BC的平行线于G,H∵GH//MN//BC,MN是中位线,易证△BDC≌△GDH,GH=BC.又AF/BF=AH/BC,AE/CE=AG/BC,两式相加:AF/BF+AE/CE=

1.如图,在等边三角形ABC中,M、N分别为AB、AC的中点,D为MN上任意一点,BD,CD的延长线分别交AB、AC于点

大哥~第二题你的问题中:正方形CDEF是怎么回事啊?附:第二题答案:16.第一题答案:(自己带进去试试.)想出来再告诉你.

在三角形ABC中,分别以AB,BC,AC为边在BC的同侧做等边三角形ABD和等边三角形ACE,等边三角形BCF,说明四

∵△BCF,△ACE,△ABD是等边三角形.∴∠BCF=∠ACE,∠FBC=∠DBA∴∠BCF-∠ACF=∠ACE-∠ACF即∠ACB=∠ECF∠FBC-∠FBA=∠DBA-∠FBA即∠ABC=∠DB

已知:如图,等边三角形DEF的顶点分别在等边三角形ABC的边上.求证:AD=BE=CF

不妨设D,E,F分别在边AB,BC,AC上.∵△ABC,△DEF为正三角形,∴∠A=∠B=∠C=60∠EDF=∠FED=∠EFD=60∠,DE=DF=EF∴∠BDE+∠ADF=180-60=120∠A

在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点

(1)证明:连结PO,CO因为在三角形PAB中,PA=PB=√2,O是AB中点所以PO⊥AB又AB=2,所以PA²+PB²=AB²则在直角三角形PAB中,PO=1/2*A

在△ABC中,AB=AC,边BC的中点为D,作等边三角形DEF,是顶点E、F分别在边AB和AC上.

在ABC中,AB=AC,边BC的中点为D.作一个等边三角形DEF,使顶点E,F分别在边AB和AC上,(1),若∠BDE=∠CDF=60°时,EF与BC平行.理由:AB=AC,则∠B=C,又BD=DC,

在等边三角形ABC中,D,E分别为AC,BC的中点,联结BD,以BD为边做等边三角形BDF

证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A

在等边三角形ABC中,D,E分别是AB,AC的中点,且AD等于CE,则角BCD加角CBE等于多少度

等于60°.△BEC全等于△CDA,所以∠CBE等于∠ACD,又因为△ABC是等边三角形每个角等于60°,∠ACD+∠BCD=60°,所以∠BCD+∠CBE=60°

如图,在等边三角形ABC,点D是BC边的中点,以AD为边作等边三角形ADE,求∠CAE的度数.

∵△ABC是等边三角形,D是BC的中点∴∠ABC=60°,∠CAD=30°∵△ADE都是等边三角形∴∠DAE=60°∴∠CAE=60°-30°=30°