在线性空间Pn*n子空间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:21:47
0不属于W2再答:且对加法和数乘都不封闭再问:后面那句话怎么理解,为什么不封闭再答:Ax=b,Ay=b,那么A(x+y)不等于b也就是x+y不属于W2再问:不好意思,能对W2举个例子吗再答:题目就是例
一个包含于另一个.设有某向量空间的子空间U,V.因为U,V都含于U∪V,若U∪V为子空间,则U+V含于U∪V.但是显然U∪V含于U+V,所以U∪V=U+V.如果U-V,V-U都不空,设u在U-V中,v
"及"行那个等式两边乘(A-λiE)^ri由fi的定义得第一个等号由f是A的零化多项式得第二个等号再问:第二个等号我清楚,就是第一个等号没想出来。为什么由fi的定义得第一个等号?能说的更详细一些吗?(
先说一下:这里W1+W2指的是一个新的集合W,其元素是w1+w2其中w1属于W1,w2属于W2.以下是证明:(w1、w2是V的线性子空间)(V定义在属于F上)首先{0}属于W1、W2故{0}也属于W;
欧式空间V有有限的标准正交基,个数为dimV ,设dimV=n,任何n维欧氏空间都与R^n同构正交阵行向量或列向量是单位向量.即元素的平方和为1,n*(1/4)^2=1 所以n=1
设a1,a2,...,an是n维空间V的一组基则V=(直和)L(a1)+L(a2)+...+L(an)其中L(ai)为ai生成的子空间,L(ai)={kai}由于a1,a2,...,an是V的基,所以
正确.因为与A可交换的矩阵为对角矩阵.[-1,0;0,0],[0,0;1,0],[2,0,0,1]为所求的一组基.这样可以么?
能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了
设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间
子空间是相对于原空间而言的说是子空间,其运算应该与原空间的运算一样否则自己是一个独立的空间而不是子空间了再问:‘说是子空间,其运算应该与原空间的运算一样’子空间和原空间运算不都应该满足(I)-(VII
为什么黎曼可积空间是闭的?下面那个黎曼可积函数序列的极限不是非黎曼可积吗?黎曼可积空间应该不是完备的吧,lebesgue可积空间是其完备化?------------------------------
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
m*n个元素中只有一个,明显是1,其余的是0,这样的矩阵有m*n个1,这m*n个矩阵构成一组基2,任意m*n阶矩阵可由这m*n个矩阵线性表示(普通意义上的矩阵加法和数乘)所以求证所有m×n阶矩阵的集合
直接用定义验证1,cosx,cos2x,cos3x线性无关即可,验证的时候可以取一些特殊点,比如0,pi,pi/2,pi/3再问:不许用特殊点,证明线性无关再答:先把我说的话看懂了再评价若存在实数k1
R^n
证明子集是子空间,只需验证对加法和数乘封闭
解题中用到了一个重要结论:你有问题也可以在这里向我提问: