在边长为的菱形ABCD中, 分别是 的中点, 则向量 与 的夹角的余弦值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:33:00
在边长为的菱形ABCD中, 分别是 的中点, 则向量 与 的夹角的余弦值为
在四棱锥P—ABCD中,底面ABCD是角DAB等于60°,且边长为a的菱形,侧面PAD

连接BD,则由已知条件可知△ABD是等边三角形,所以BG⊥AD,再由于两个面垂直,所以很容易证明BG⊥平面PAD再连接PA,由于△PAD是正三角形,G是中点,所以AD⊥PG,由于△ABD是正三角形,G

在边长为a的菱形ABCD中,角ABC=60度,PC垂直面ABCD.E,F分别是PA和AB的中点.求:EF//平面PBC,

ef是三角形pab中位线所以ef平行于pb所以ef平行于面pbc连接ac取ac中点m连em有em平行于pc又因为ef平行于面pbc所以面efm平行面pbc去bc中点n连an又abc为等边三角形故an垂

如图,在边长为M的菱形ABCD中,角DAB=60度,E是AD上不同于

设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4

边长为1的菱形ABCD中,角DAB=60 连接对角线AC 第N个菱形面积

第一个菱形ACC1D1面积是原始菱形ABCD面积的3倍;以后每个都一样,面积都是上一个菱形的3倍,因此第N个菱形面积为原始菱形ABCD面积的3^N倍,原始菱形ABCD面积为(√3)/4,故第N个菱形面

如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形,

(1)找PC中点M,则NM//=ED,所以NMDE是平行四边形,所以EN//MD,所以EN//平面PDC (2)链接EB,由题可知,∠EBC=90°,即BC⊥EB,又因为三角形PAD为正三角

在四棱锥P-ABCD中,侧面PCD是边长为2的正三角形且与底面垂直,底面ABCD是面积为2√3的菱形

(1)求证PA⊥CD作PE⊥DC交DC于E,因为PDC为边长为2的等边三角形,所以E为DC的中点.由ABCD的面积为2√3的菱形△ADC面积=√3=1/2*DA*DC*SIN∠ADC,√3=1/2*2

在椎体P-ABCD中,ABCD是边长为1的菱形,角DAB=60度,PA=PD=根号2PB=2,E,F分别是BC PC的中

∵BG⊥AD、PG⊥AD,∠PGB是二面角P-AD-B的平面角,AG=1/2、PA=√2,PG=√(PA^2-AG^2)=√7/2,AB=1、AG=1/2,BG=√(AB^2-AG^2)=√3/2,△

如图,边长为2的菱形ABCD中

DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和

在边长为a的菱形ABCD中,∠ABC=120°,PC⊥面ABCD,且PC=a,E为PA的中点.

1.连接AC交BD于H连接EH因为EH分别为APAC中点,所以EH‖PC又因为PC⊥ABCD所以EH⊥ABCD因为EH在面EBD上所以面EBD⊥面ABCD2.因为面EBD⊥面ABCDAC⊥BD所以AC

如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.

(1)证明:∵AE=PE,AF=BF,∴EF∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面A

在菱形ABCD中,∠DAB=120°,如果它的一条对角线长为12cm,则菱形ABCD的边长为______cm.

若对角线AC=12cm,如图甲所示.∵四边形ABCD是菱形∴∠DAC=∠BAC=12∠DAB∴AB=BC=CD=AD,AD∥BC∴∠DAC=∠ACB,∠DAB+∠B=180°∵∠DAB=120°∴∠D

高中必修2立体几何题如图,在四棱锥O--ABCD中,底面ABCD是边长为1的菱形,∠ABC=π/4,OA⊥底面ABCD,

我只写下思路和必要的式子,因为百度里面我不知道这么把数学符号打上去,见谅(1)取AD的中点Q,连接MQ,NQ在菱形中NQ平行CD,在三角形中MQ平行OD,可判定平面MNQ平行平面OCD,又因为MN属于

已知:平行四边形ABCD中,对角线AC=a,BD=b,四边形EFGH为内接菱形,且菱形的边长分别与平行四边形ABCD的对

因为AC‖HG,所以DH/AD=HG/AC,即DH/AD=HG/a,①因为BD‖EH,所以AH/AD=EH/BD即AH/AD=EH/b,②①+②,得,DH/AD+AH/AD=HG/a+EH/b整理:(

如图,正△AEF的边长与菱形ABCD的边长相等,点E,F分别在BC,CD上,则∠AFD为?

此题目的考点是:菱形的性质;等腰三角形的性质;等边三角形的性质.分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠ADF的度数.正△AEF的边

菱形ABCD边长为2,∠A为45度,求菱形ABCD的面积

要不要过程,答案是二分之九倍根号二

(2012•汕头二模)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不

(1)∵在菱形ABCD中,BD⊥AC,∴AO⊥BD∵EF⊥AC,∴PO⊥EF∵平面PEF⊥平面ABEFD,平面PEF∩平面ABEFD=EF,PO⊂平面PEF∴PO⊥平面ABEFD,结合BD⊂平面ABE

已知:如图,在菱形ABCD中,E、F分别是CB、CD上的点,正三角形AEF的边长与菱形的边长相等.试探索∠CEF与∠CF

设∠B为x,则∠C等于180-x,有1知∠CEF与∠CFE相等,∠CEF=∠CFE=x/2,AB=AE,得∠AEB=x,∠AEF=180-∠AEB-∠CEF,60=180-x-x/2,得x=80,即∠

如图在菱形ABCD中,BD为对角线,E,F分别为DB,DC若EF=4,则菱形ABCD的周长是多少

题中所说E,F分别为DB,DC?什么,没说完?再问:中点再答:中点的话,EF=1/2BC=4,BC=8.周长L=4BC=32.

在菱形ABCD中,角DAB=60°,AC=3√3,则菱形ABCD的边长为?

连接BD,交AC于O,设AB=2x,则AO=AC/2=(3√3)/2在直角三角形AOB中∵∠BAO=∠DAB/2=30°∴BO=AB/2=x根据勾股定理:AB²-BO²=AO

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E、F分别是PB、CD的中点,且PB=PC

(1)证明:取BC的中点M,连结AM,PM.∵AB=BC,∠ABC=60°,∴△ABM为正三角形,∴AM⊥BC.又PB=PC,∴PM⊥BC,AM∩PM=M,∴BC⊥平面PAM,PA⊂平面PAM,∴PA