在锐三角形abc中 内角ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:00:40
假设a,b,c都大于60,那么a+b+c>180;这与三角形内角和为180矛盾,所以至少有一个不大于60.
∵AB=AC∴∠B=∠C∵AD=CD∴∠1=∠C∵AB=BD∴∠2=∠3=∠1+∠C设∠1=∠C=∠B=x则∠2=∠3=2x△ABC内角和180°∠C+∠B+∠1+∠2=180°x+x+x+2x=18
用枚举4角C=7角A则角C:角A=7:4=14:8=21:12=28:16=35:20=42:24=49:28=56:32=63:36=70:40=77:44=84:48180-11=169180-2
ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a
由a+b+c=20(1)由S=(1/2)acsinB=10√3,(1/2)ac×(√3/2)=10√3,∴ac=40(2)由cosB=(a²+c²-b²)/2ac=1/2
sinA=cosB得到A+B=90则C=90也就是说sinC=1可是如果使用余弦定理S=1/2*ab*sinC那么15=1/2*60*sinC那么15=30*sinC
分两种情况:第一顶角A=80度,则底角B=C=(180-80)/2=50度第二一个底角B=80度,则C=80度.A=180-80*2=20度
(1)∵△ABC中,A、B、C成等差数列∴A+C=2B,又A+B+C=180°∴B=60°由余弦定理知:b²=a²+c²-2accosB又b=7,a+c=13联立三式解得
00tanb>0a,b为锐角tanatanb0tanc=tan(180-a-b)=tan(a+b)=(tana+tanb)/(1-tanatanb)>0所以c也是锐角锐角三角形
90以内的质数有:23571113171923293137414347535961677173798389质数除2以外均为奇数,三个奇数相加亦为奇数,而三角形内角和的度数为180,是偶数,所以必有一个
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
c^2=a^2+b^2-2abcosC=a^2+b^2-a^2c^2=b^2c=bB=C
1、∵A、B、C是三角形的内角∴sin(A+B)=sinC∴√2asin(B+π/4)=c√2sinAsin(B+π/4)=sinC(根据正弦定理)√2sinA[(√2/2)sinB+(√2/2)co
证:在一个三角形中,至少有一个内角小于或等于60°.已知:△ABC,求证:△ABC中至少有一个内角小于或等于60△ABC中若三个内角都等于60°为等边三角形.若其中一个角等于60.1°,另外两角为60
2√3/sin60°=AC/sinxAC=(2√3/sin60°)sinx2√3/sin60°=AB/sin(180°-60°x)AB=(2√3/sin60°)sin(180°-60°-x)AB=(2
你的题不全啊怎么回答啊
已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE
解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略
三角形ABC中,三个内角A,B,C成等差数列∴2B=A+C∵A+B+C=180°∴B=60°
2B=A+C,A+B+C=180A+B+C=2B+B=180B=60cosB=(a^2+c^2-b^2)/(2ac),a=8,b=7c=3或c=5,都合乎要求S△ABC=1/2ac*sinB=1/2(