地面高低二阶导数的意义
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 08:01:09
常用的是二阶导数是曲率,但是需要乘以一个系数.三阶,四阶……导数都有几何意义,但是我实在记不起来那是什么意思了,反正是比较深的,看看陈省身的书去,本科的可能还看不懂.再问:好吧。。
可以有三种理最术语化的是“该点曲率的大小”;和高中有点衔接的是“该点在曲线上移动时切线的斜率变化的剧烈程度”;最通俗的说法是“曲线‘变弯’的快慢”.三种的实质完全一样.
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的.
二阶导数没有特别的几何意义,通常可以根据二阶导数的符号变化,判断函数曲线的凹凸性及拐点,或用来判断所求驻点是否是极值点并且取得极大还是极小.例中,y''(0)=-1=0说明f(0)极小,理由同上类似.
意义如下:(1)斜线斜率变化的速度(2)函数的凹凸性.
汽车怠速过高耗油量会偏大,同时每次等红灯,停车等待会增加污染排发.怠速过低会导致发动机运行不稳且容易熄火.
简单来说,一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率.连续函数的一阶导数就是相应的切线斜率.一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则
1、可微分等价于可导;2、一阶可导不一定二阶可导,二阶可导说明一阶导数存在且连续;3、Z=f(x,y),就是空间曲面方程;四维以上就没有具体几何意义了,但仍沿用几何上的名词!4、常微分就是只有一个自变
意义如下:(1)斜线斜率变化的速度(2)函数的凹凸性.关于你的补充:二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数
(2)把求出来的解带入原方程,比较大小.拐点判断:(1)求f''(x);(2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;(3)对于(2)中求出的每一个实根
一楼所言.是一阶偏导数的几何意义.“二阶混合偏导数”,没有能够“直接看出”的“几何意义”.当然,一定要,也不是不能做出来.F〃xy(x0,y0)=(F′x(x0,y)'y(y0)也就是,先作一个一元函
二阶导数再问:对称中心,是一个点,对于一次函数是什么?再答:二阶导数是一阶导数的导数,表示一阶导数的变化率。在几何上反映为该函数的凹凸性,二阶导数大于0为凹函数,小于0为凸函数。如一次函数,二阶导数等
并不是所有的数学量都能在现实中找到几何背景的,二阶导数首先显然是一阶导数的斜率(如果它们都存在的话),还有可以想见的是二阶导数与曲线的曲率有关,如果你有课本的话,你可以看一下有关曲率的部分.
估计楼主谈论的问题是机械设计的问题,这其中大都采用小位移理论,比如在梁的弯曲变形计算中.多数情况下,实际变形很小,此时挠度的二阶导数可以近似的代表梁轴线的曲率,因为曲率式中的挠度的一阶导数是可以忽略的
可求得切线方程为y=-4.5/4x+4.5则P点处的坐标为(2,2.25),P点处的斜率为-4.5/4=-1.25即f(2)=2.25f′(2)=-1.25f(2)+f′(2)=1再问:切线方程没看懂
>> syms x>> y=x*exp(-x)*sin(x);>> y1=diff(y,x);>> y
解题思路:该题考查了导数的应用,可是原题印刷出了问题,具体答案请看详解过程解题过程:
简单点理解,一阶导数是函数图像在某点切线的斜率,可用驻点来求极值.二阶导数是函数图像在某点的曲率,可用拐点来判别拐向.导数的阶次对函数是几元的并无要求,对函数的次数也无要求.例如直线的曲率处处为零,二
解题思路:考查了对数的概念,几何意义,以及导数的应用。解题过程:附件1最终答案:略