均质细杆ab长l 质量为m起初紧靠在铅锤墙壁上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:21:51
均质细杆ab长l 质量为m起初紧靠在铅锤墙壁上
如图所示,平板车质量为M,长为L,ab=bc=cd=1/3L,车放在水平地面上,左端a点放有质量为m=M/3的物体,右端

平板车受到弹簧的推力作用,到弹簧恢复到原长时,向左移动了2L/3对物体,水平方向不受力.物体水平方向要保持原来的静止状态.因此相对于平板车,物体相当于右移2L/3.物体在c点,选C

如图所示,平板车质量为M,长为L,ab=bc=cd=1/3L,车放在水平地面上,左端a点放有质量为m=M/3的物体,

C,因为物体之间没有摩擦,所以对于物体m而言,合外力为零.根据牛顿第一定律可知,它将继续保持静止.当弹簧恢复到原长的时候应该是C点运动到了现在的A的位置,而物体m没有动,所以m处于小车的C点.

斜面倾角为a,长为L,AB段光滑,BC段粗糙,AB=L/3,质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好为零.

设动摩擦因数为μ,根据动能定理有:mgLsina-(2μmgLcosa)/3=0解得μ=(3sina)/(2cosa)=(3tana)/2

一道动量守恒题~小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木

在细绳烧断瞬间,C获得的速度为v1,AB获得的速度为v2,根据动量守恒,mv1=Mv2当C运动到B时,小车将停止运动,所以小车运动时间t=L/(v1+v2)

有固定转轴的平衡问题质量为M的均匀板AB长为L,在其中点C处固连一根重力不计的斜杆CO,CO长为L/2与版面保持60角.

 说明:(1)因为是临界状况,所以墙壁与木板间没有力的作用;(2)因为地面对研究对象的力的作用点均为O点,所以它们对O的力矩均为零,故在受力分析中并未标出.(3)关于力F2的力矩方向取正是考

如图所示,长L、质量为m的金属杆ab,被两根竖直的金属丝静止吊起,金属杆ab处在方

在上图中有2T+ILB=G改变电流方向后:此时有4T=ILB+G由上二式得B=T/IL

如图,金属杆ab的质量为m,长为L,通过的电流为I,处在磁感应强度为B的匀强磁场中,结果ab静止且紧压于水平导轨上.若磁

作出金属杆受力的主视图,如图. 根据平衡条件得Ff=FAsinθmg=FN+FAcosθ   又FA=BIL解得:Ff=BILsinθFN=mg-BILcosθ

水平均质细杆质量为m,长为l,C为杆的质心.

角加速度为0AB杆由水平到竖直阶段由于重力做功,角速度不断加速的,故角加速度为正值;超过竖直阶段之后重力做负功,角速度是不断减速的故角加速度为负值,而在竖直位置角速度达到最大值,也是一个临界点,此时角

10 个同样的木块紧靠着放在水平地面上,每个木块的质量 m=0.4kg,长 L=0.5m,它们与地面之间的动摩擦因数均为

首先分析受力.我们先把木块从左至右依次编号1,2,3,.,10.木块首先在1号上运动,会给1号一个向右的摩擦力,使1号有一个向右的运动趋势,而10个木块是紧靠着放在水平地面上的,所以右边的9个木块会给

如图所示,均质长杆AB长为l,质量为m,角速度为ω,求杆AB的动能;杆AB的动量.

是绕o点转动吧.根据刚体转动动能定理E=1/2*J*w^2,分两半考虑JAO=3/4*m*(3L/8)^2=27mL^2/256JBO=1/4*m*(L/8)^2==mL^2/256因此,E=1/2*

如图所示,均质长杆AB长为l,质量为m,角速度为ω,求杆AB的动能;杆AB的动量

是绕o点转动吧.根据刚体转动动能定理E=1/2*J*w^2,分两半考虑JAO=3/4*m*(3L/8)^2=27mL^2/256JBO=1/4*m*(L/8)^2==mL^2/256因此,E=1/2*

小球AB质量均为m,用长为L轻杆连接,竖直放在墙边,轻轻震动B球,使AB开始运动,A下降L/2时两球速度?

本题考查两个知识点:一、能量守恒mgL/2=1/2mVa^2+1/2mVb^2;二、运动的合成与分解,两球沿杆方向的分速度相等,(杆沿杆方向上各质点速度必须相等,否则杆会断开)故有:Vbcos30=V

长为L的平型金属板电容器,两板间形成匀强电场,一个带电荷量+q,质量为m的带电粒子,以初速度v0紧

很高兴为你解答.正电荷水平方向不受力,做匀速直线运动;垂直方向受向下的电场力,做初速为零的匀加速直线运动,由此也可判断上极板带正电. 如图所示:电荷飞出时,v1/v0=tan30度所以v1=

如图所示 质量均为m的两个小球AB用一根长为L的轻质细杆栓连后 放在倾角为θ的光滑下面上

设:水平面为零势能面,两球在水平面的速度为:v1、则有机械能守恒:mgh+mg(h+lsinθ)=2mv^2/2,mv^2/2=mgh+mglsinθ/2解得:v=√(2hg+glsinθ)2、动能定

如图所示,竖直墙上A点用AB细线悬挂一个光滑小球,小球质量为m=3kg,半径r=0.3m,细线AB长L=0.2m,C为接

(1)图为,(2)设∠BAC为θ,cosθ=0.40.5=0.8,tanθ=0.30.4=0.75FAB=mgcosθ=3×100.8N=37.5N,FC=mgtanθ=3×10×0.75N=22.5

如图所示均质长杆AB长l质量为m角速度为w求AB的动能和动量

取杆中点为重心位置,则v=Lw/2动能EK=mv^2/2=mL^2w^2/4动量p=mv=mLw/2

图示均匀细直杆AB长为l,质量为m,图示瞬间A点速度为v,则AB杆的动量大小为?

设AB的中点为o点,因AB为匀质,所以O点为AB的质心.1)AO=AB/2,根据数学模型可以证明推断出,O点竖直向下速度为V/2,2)因AB与地面夹角45度,可以知道B点有向右运动趋势,B点瞬时速度与

小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,

A、物体C与橡皮泥粘合的过程,发生非弹簧碰撞,系统机械能有损失,产生内能,故A错误.B、整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确,C、取物体C的速度方向为正方向,