坐标系中向量垂直公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:40:05
向量a=(x1,y1,z1)b=(x2,y2,z2)a//b则x1/x2=y1=y2=z1/z2a⊥b,则x1x2+y1y2+z1z2=0
再问:非坐标呢?再答: 再答:方框内的
C(-3,29/4)设C=(x,y)则向量AC=(x+3,y-1)BC=(x,y-5)AB=(3,4)因为向量AC‖向量OB所以(x+3)*5-(y-1)*0=0即x=-3因为向量BC⊥向量AB所以x
设向量a(x,y)向量b(x1,y1)若向量a平行向量b则xy1=yx1(内向等于外向)若向量a垂直向量b则xx1+yy1=0
假设向量a//向量ba=(x1,y1),b=(x2,y2)则有a=λb(x1,y1)=(λx2,λy2)即x1/x2=y1/y2=λ变形得x1y2-x2y1=0我简单说一下,因为乘过去了,所以排除了“
等等再答: 再答:不客气
法向量相乘等于0再问:那向量a等于(x1,y1),向量b等于(x2,y2)公式怎么算再答:向量a*向量b=(x1*x2,y1*y2)=x1*x2+y1*y2=0
如图.再问:平面坐标系的不是有X1Y2-X2Y1=0这个吗,三维的有这样的吗?再答:有的。。其实在二维中。。你的那个条件可以写成x1/x2=y1/y2。。。然后你交叉相乘就跟你知道的那一个是一样的了。
cos=cosc*cosb-cosc*cosa由于向量方向问题,还需最后用目测确定是钝角还是锐角.这应该是最小角定理
把两条直线用向量表示出来、然后相乘为零就证明两直线垂直了…
不是
向量a垂直b向量a*向量b=0向量a=(x1,y1)向量b=(x2,y2)向量a垂直b,则x1x2+y1y2=0
利用两个直线的的方向向量的数量积为0即:若A(x1,y1,z1),B(x2,y2,z2)AB一个方向向量为(x2-x1,y2-y1,z2-z1)若C(x3,y3,z3),D(x4,y4,z4)CD一个
a,b是两个向量a=(a1,a2)b=(b1,b2)a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数a垂直b:a1b1+a2b2=0
在二维空间中,一个向量可以表示为a=(x,y)(从(0,0)点指向(x,y)点).如果向量A=(x1,y1)与向量B=(x2,y2)垂直则有x1*x2+y1*y2=0.如果不用坐标,A与B的内积=|A
设:β1=(x1,y1).β2=(x2,y2).(β1≠0.β2≠0).x轴到β1的转角为α1,x轴到β2的转角为α2,则:sinα1=y1/√(x1²+y1²),cosα1=x1
设B点坐标为(x,y)则向量AB为{x+3,y-2}向量AB与a垂直是,所以2(x+3)-3(y-2)=0|AB|=3根号13,所以(x+3)^2+(y-2)^2=(3根号13)^2联立可解除x,y
假设向量a//向量ba=(x1,y1),b=(x2,y2)则有a=λb(x1,y1)=(λx2,λy2)即x1/x2=y1/y2=λ变形得x1y2-x2y1=0我简单说一下,因为乘过去了,所以排除了“