复变对z求偏导∂f ∂z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:04:04
因为f(z)=|z|当趋于0-时f(z)=|-1;当趋于0+时f(z)=|1;右极限不等于左极限.所以f(z)=|z|在z=0处不可导而在处0以外的其他地方都可导且解析.这判断这种是有规律的,你要好好
不满足C-R方程,不可导
e^z=e^(x+iy)=e^x(cosy+isiny),设实部u=e^xcosy,虚部v=e^xsiny∂u/∂x=e^xcosy,∂u/∂y=-e^
用泰勒展开式做.再问:不会吧?这个题怎么用泰勒展开式啊?我只知道得让四个偏导为零,但我只能得到四个偏导在z▫为零。再答:在z0处泰勒展开。解析函数的泰勒展开。
你好此函数仅在原点处可导谢谢
这个函数在复平面上是不可导的,因为复变函数可导首先要满足柯西黎曼方程u'x=v'y,u'y=-v'x,此函数满足柯西黎曼方程的点只有z=0.但要注意的是柯西黎曼方程方程并不是可导的充分条件,满足柯西黎
同学,浙大的吧?这道题我也不会……
如图,红色部分是定理有两种方法
一般情况是不可以的,比如:再问:那什么时候可以呢?或者你说一下共轭函数的求法再答:一般的就根据这几个等式计算就可以了再问:关于最后一个公式,如果f(z)是由e^z组成的,那求f(z)的共轭是不是只要用
是二级极点!满足极点定义z0=0;n=2;φ(z0)=e^0+1=2不等于零再答:��ӭ�ʣ�
当点(x,y)沿x轴和y轴趋于(0,0)时,f(z)的极限都是0.但它沿直线y=mx趋于(0,0)时,limf(x,y)=lim(mx*x/(x*x+m*m*x*x))=m/(1+m*m),对于不同的
f(z)=z^4/(z-i)由f(z)=0可得零点为0(3个重根)孤立奇点为i,因分母不能为零,且z=i为一阶极点.故极点的个数为一个.z=i处得留数:Res(f,i)=(lim(z->i))[(z-
考虑序列a_k=k^(-1/m)(取实根),有k趋于无穷时a_k趋于0且1/(a_k)^m=k,而tan(a_k)趋于0.f(a_k)的分子e^k趋于无穷而分母趋于0,f(a_k)趋于无穷.证明极限不
既然在z0解析,也就是说在z0的一个邻域可导,当然在z0点也是可导的.设在z0的导数为A,那么有f(z0+z)-f(z0)=Az+o(z),对于这个式子令z趋于0取极限就有f(z0+z)趋于f(z0)
在0处泰勒级数收敛半径为pi/2;在0处罗伦级数收敛半径为pi/2再问:pi��ʲô�������������Ŀ����дһ�¹�̺��лл��再答:piΪԲ����f(Z)�ļ���Ϊcos(z
f(z)=u(x,y)+iv(x,y),现在u=u(x,y)=x²,v=v(x,y)=-y,分别对u,v求偏导数,则∂u/∂x=2x,∂u/∂
这个就把z看成实变量对z求导就行
设z=x+iyf(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsinyRe[f(z)]=e^xcosy,Im[f(z)]=e^xsiny令u(x,y)=e^xcosy