多元线性F值是什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:18:45
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
用excelf分布函数
哥们自己看吧,我没耐心,你有时间就琢磨一下吧!
这样是不可以横向比较的,因为每个变量的系数的量纲不一样.如果你想比较自变量对因变量的影响程度的话,首先把所有变量消除量纲再进行回归,回归出来的系数的绝对值大小就表示影响程度的大小.怎么消除量纲自己查资
这两个检验你不用管自由度.记住公式就可以.考试的时候套用就行...
结果里,R值就是回归的决定系数,代表各变量能解释因变量的程度.ANOVA里,sig小于0.05证明回归方程有效.constant对应的B值是截距(常数项),其他变量对应B值就是变量的影响系数.变量对应
当然有意义.F值对应的SIG>0.05,则表示回归方程是无效的.
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
求什么值啊,最值,还是直接带入求啊?问题都没有说明白.再问:函数值,y的值,x的值都知道再答:x1---x5的值呢,不知道他们的值,咋求y值呢再问:x的值都已知【99156080100】,要求写mat
t检验用以进行参数显著性假设检验方差分析用以判别影响变量的因素是都是显著的直线回归用以得到两个变量之间的线性关系多元线性回归用来分析一个变量与多个变量之间的关系,它是直线回归的扩展.在线性回归中,t检
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
回归系数越大表示x对y影响越大,正回归系数表示y随x增大而增大,负回归系数表示y随x增大而减小.回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动1单位,平均而言,Y将变动b单位.
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html
只有当其为一次函数时才是线性的,比如f(x)=ax+by+c的形式才为线性的.其余的情况都为非线性的,比如f(x)=axy+b,f(x,y)=x^2+ay+b再问:请问有多元函数的线性和非线性定义吗?