多元线性回归中有一个因素不显著怎么办
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:29:02
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
不可能有图的两个变量可以在二维空间即平面上作出图形三个变量可以在三维空间作出图形(空间解析几何)四维及以上的就根本不可能做出来了!三维的可用MATLAB再问:比如用spss软件已经做出二元线性回归方程
int应该是调用regress函数的第二个返回值,也就是对回归系数的区间估计NAN表示不定量,说明regress函数无法对你的回归系数做区间估计,看看你是不是少了什么东西,比如说置信度
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教
你说的共线性是高度共线还是有点高度共线只能用岭回归啊,主成分回归啊sem啊.很多方法解决啊再问:VIF=16再答:高度共线性了,改方法吧,不能直接回归再问:ֻ��һ���ع�ϵ��ĸ߶ȹ�������
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
常量系数为负是什么意思怎么分析,而且如果在显著性水平sig大于0.5这合理不?第一,常量估计值并不是负的,而是6.353.第二,其它的解释变量中,有三个系数是负值,这说明,这些自变量与因变量是反向即负
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
可以~回归以后再看是否出现自相关、异方差、多重贡献等问题,再修正就行了~再问:我在spss里面用的逐步回归,这个变量进了回归方程,可是和自变量的相关性很低,所以不知道可行不可行!再答:首先逐步回归应用
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
x=[143145146147149150153154155156157158159160162164]';X=[ones(16,1)x];增加一个常数项Y=[88858891929393959698
matlab里面有提供回归模型的全套解决方案,就是线性拟合的工具箱,cftool,在命令窗口输入cftool命令,可以调出工具箱,你可以自己摸索下,都是简单的英语,相信你摸索一会儿就会了.再问:我需要
程序是没错的,但显然拟合效果很不理想.y=[354355474357262728292229191114232022138327265];x1=[222222555555777777101010101
用eviews计算,看各参数的T检验及F检验是否通过,如果F检验通过,但是有两个以上T检验不通过,就有很大的可能是多重共线性了.还有就是看模型中所用的变量之间会不会明显相关,就像,货币供应量和工资之类
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.