多元非线性回归分析步骤 SPSS
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:53:45
非常简单的,多元线性回归是一样的,你直接把因变量选入上面那个框,自变量全部选入下面.然后用逐步回归分析(常用)ENTER哪里下面的第二个.然后回归分析模型主要看有B和Beta那个表格!
在菜单中找到analyse,regression,选择linear就可以了,打开对话框,选择自变量,因变量,OK就可以了
最后一个
截图就不做了,说下大概的操作,1、在spss里variableview里,输入5个变量名称,可用中文.2、然后在dataview里分别录入5个变量对应的数据3、点击analyze--regession
Solverstoppedprematurely.lsqcurvefitstoppedbecauseitexceededthefunctionevaluationlimit,options.MaxFu
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
对的系数不显著的的提出就行了再问:如果结果中Sig.值都大于0.05,是不是该换个因变量?再答:你的自变量是不是不合理啊再问:怎么看合不合理?
在分析——回归分析——曲线回归(第二个)不知道你的具体问题,也不能给你具体细的指标选择.
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
从你的回归分析系数的假设检验看出所以系数在0.05的检验水准下都没有统计学意义所以回归方程拟合的效果不好
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
推测是前人的数据进行了标准化.你也用标准化数据回归试试.标准化数据可以用分析-描述统计-描述弹出的对话框中将下面的“将标准化得分存为变量”打勾.然后回归的时候用数据里面新生成的zx1,zx2.数据进行
excellinest函数计算结果:t=a1x1^2+a2x1+a3x2^2+a4x2+……+a8x4+a9下面9个数分别为a8,a7,a6,a5……a2,a1,a9-0.000871944-0.0
模型摘要模型RR方调整的R方估计的标准差1.838a.703.5057.00366a.预测变量:(常量),综合指标Z,附加济掺量,水灰比,砂率.ANOVA(b)模型平方和df均方F显著性1回归695.
可以的.把P取对数后作为新的因变量,就成为线性的了.可以直接估计.
用参数估计法,它提供了好几种模型,你可以选择上所有的然后看你的哪个R方最大.就行了.如果感觉都不好,就用非线性回归自己写方程.不过那个药大概知道你的方程的形状,然后设好初始参数就可以.ppv课学习网站
自变量的地方选入多个变量就可以了.
先画一下散点图看看是否有线性关系如果有线性关系则用线性回归如果呈非线性关系,采用曲线回归中多种回归方程后选择拟合最优的一个
除了碱度R和常数项以外,其余变量显著性都极低.模型总体显著性也低.最后的P-P图上,散点聚集没有聚集在直线上结论:模型显著性不足,更改模型设定,或采用逐步回归.再问:帮我看看我的原始数据,这个如何处理
打开SPSS,输入数据,再选择分析——回归分析,多元回归