如何判断函数收敛还是发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:59:00
考虑an=2^(n^2)/n!a1=2/1=2an+1/an=2^((n+1)^2)/(n+1)!/[2^(n^2))/n!]=2^[(n+1)^2-n^2]/(n+1)=2^(2n+1)/(n+1)
再问:再答:积分不会?再问:这样做对不对啊再答:再问:再问:哥们儿,在不在啊,这个感应电动势方向是怎么判定啊再答:哈哈3年没看了你让我怎么答再问:那为啥你高数都会嘞再答:我学数学的啊再问:果然叼,给跪
通项=(-1)/(2n-1)=(-1)×1/(2n-1)把常数-1提出来判断通项为1/(2n-1)的级数就行了因为1/(2n-1)>1/(2n)=0.5×1/n因为通项为1/n的级数是发散的(调和级数
单调递减趋于0,变成积分,1-cos变成2sin^2,1/2x变成t,总之就是sin/t的平方,从0到1/2,而从0到无穷是pi/2(书上都有),所以是收敛的
极限绝对值的那个东西除以n分之一为无穷大,下面发散所以上面发散.然后用莱布尼兹可求原级数收敛,故为条件收敛
(1)xn<2^n/3^n<(2/3)^n limx->oo时 xn< (2/3)^n<0(2)n*(-1)^n &n
知limn/(lnn)^9->∞那么存在N足够大,使得当n>N时,1/n*1/lnn(1->N)∑1/(lnn)^10+(N+1->∞)∑1/n*1/lnn而∑1/n*1/lnn由比较积分得知O(∑1
1.(1)因为|(-1)^n/(2n+3)|=1/(2n+3)>1/(2n+n)=1/3n,而∑1/3n发散,由比较判别法知∑|(-1)^n/(2n+3)|发散;(2)而1/(2n+3)单调递减且li
1+1/2+1/3+…1/n+…是调和级数,老师讲的,这种级数就是发散的1+1/8+1/27+…1/(n^3)+…=1+1/2^3+1/3^3+...+1/n^3+...这种是p级数p就是那个指数如果
马上写来,要输入符号再答:sin(nπ+1/lnn)=(-1)^nsin(1/lnn)由于limnsin(1/lnn)=limn(1/lnn)sin(1/lnn)/(1/lnn)=无穷,故级数sin(
问题1:你写的这个表达式是通项还是前n项和的公式啊?问题2:高中还是大学?大学的话就直接上公示了.再问:是大学的,这个表达式是从第一项开始一直往后加,没有尽头,不是前n项再答:这是一个调和级数,发散的
n趋于无穷大时,趋于某个确定的值就是收敛,否则就是发散的你第二个问题问得太好了,够写半本书了
加减的时候,把高阶的无穷小直接舍去如1+1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如1/n*sin(1/n)用1/n^2来代替
收敛..当n趋向很大是,xn趋向于0证明:对任意给定的e,取N=1/e,当n>N时|xn-0|
利用根式判别法,当n趋于无穷大时,(2^n+n)/(3^n-n)的n次方根的极限为2/3
极限会求吧,如果数列项数n趋于无穷时,数列的极限==实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的.
条件收敛再答:再答:请采纳吧