0到1xarcsinx的定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:57:49
第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这
原式=∫(0→1)√(1-(x-1)^2)d(x-1)令x-1=sint则原式=∫(-π/2→0)cost*costdt=∫(-π/2→0)(cos(2t)+1)/2dt=1/4∫(-π/2→0)co
答案是0.积分后得-cosx+1/2x^2-1到1.楼上利用对称区间奇函数的积分为0的性质最快.厉害.
∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)*e^x+C所以定积分=(π/2-1)*e^(π/2)-(-1)*e^0=(π/2-1)*e^(π/2)+1
∫(0到1)xe^(2x)dx=1/2∫(0到1)xde^(2x)=1/2xe^(2x)-1/2∫(0到1)e^(2x)dx=1/2xe^(2x)-1/4e^(2x)+c
原式=∫(0,π/2)cosxdx-∫(π/2,π)cosxdx=(sinx)│(0,π/2)-(sinx)│(π/2,π)=(1-0)-(0-1)=2
先求∫(0,x²)√(1+t²)dt和∫(x,2)t²xos(2t)dt的不定积分(∫(a,b)表示从a到b积分).设t=tanα,则dt=sec²αdα,si
0到4的定积分|2-x|dx=0到2的定积分(-2+x)dx+2到4的定积分(2-x)dx=-2+2=0
再问:好人做到底,继续帮忙写出来吧,不会才来问的,谢谢再问:好人做到底,继续帮忙写出来吧,不会才来问的,谢谢再答:
∫[1-COS2(wt+∮)]dt=t-(1/2w)sin2(wt+∮)|[0,T]=T-(1/2w)sin2(wT+∮)+(1/2w)sin2∮不明白可以追问,如果有帮助,请选为满意回答!再问:后面
设t=arcosx,则x=cost,0=cosπ/2,1/2=cosπ/3
(π,0)∫xsinxdx=(π,0)∫-xdcosx=-xcosx|(π,0)+(π,0)∫cosxdx=-(0-πcosπ)+sinx|(π,0)=-π按常规,应该是0到π如果是,则结果应是π再问
∫(0到-1)sinxdx=-cosx(0到-1)=-[cos(-1)-cos0]=-(cos1-1)=1-cos1
∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2
令√x=t,x=t^2,dx=2tdt.故S(0,e)e^√xdx=S(0,√e)e^t*2tdt=2S(0,√e)td(e^t)=2[te^t(0,√e)-S(0,√e)e^tdt]=2[(t-1)
√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2
(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.
因为lnx在0处无定义,这是一个瑕积分,首先用分部积分法,下面[0,1]表示0为下限,1为上限∫[0,1]lnxdx=xlnx[0,1]-∫[0,1]x*(1/x)dx=0-∫[0,1]1dx=-1注