如何证明三角形中线交于一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:37:28
已知:△ABC中,AX,BY,CZ分别是BC,AC,AB边上的中线,求证:AX,BY,CZ相交于一点G,并且AG∶GX=2∶1X,Y分别是BC,AC的中点,所以XY=DE,所以,四边形DEXY为平行四
是不是这个啊
设AD,BE,CF是中线.AD,BE交于K.CF,BE交于H.AB=c,AC=b.BK=tBE=t(b/2-c).AK=AB+BK=c+t(b/2-c)=tb/2+(1-t)cAK=sAD=s(b+c
用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有向量OP=1/3(向量OA+向量OB+OC向量)注意:要求用向量法,不使用坐标假设两条中线AD,BE交与P点连接CP,取AB中点F连接P
已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角
做三角形的两条角平分线则两线必交于一点这点到三边的距离都相等所以第三条角平分线也过这一点
如图,E.F为中点,AO,BC交于D 证明①=⑥.从而BD=DC,三条中线交于一点.②=③,④=⑤,①+⑥=④+⑤=②+③=2⑤=2②,⑤=②=③=④.(②+③)/①=AO/OD=(④+⑤)
设BC中点为D,AC中点为E,AD交BE于O,连接CO延长交AB于F向量AD=1/2(AC+AB)OD=1/3AD=1/6(AC+AB)=1/6(AC+CB-CA)CO=CD+DO=1/2CB+1/6
三角形ABC,角A,B的平分线交于P,过P做AB,BC,AC垂线垂足分别为D,E,F△AFP≌△ADP,△BDP≌△BEP所以:PD=PF=PE因为:PE⊥BC,PF⊥AC,PC公用所以:△CEP≌△
下面提供您2种证法,请君自便,(向量表示符号弄不出,可能给您带来阅读等方面不便,在此深表歉意.)证法1先做图,做出过B,C的两条中线,分别交AC于M,交AB于N,所以M,N是AC,AB的中点.连接MN
AD、BE、CF是△ABC的三条中线,用向量法求证:AD、BE、CF共点.[证明]令BE、CF相交于O,且BO=mOE、CO=nOF,其中m、n为非零实数.则:向量BO=m向量OE、向量CO=n向量O
以边AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系,设A(-a,0),则B(a,0),C(c,d),那么,AB的中点为O(0,0),BC的中点为D((a+c)/2,d/2),AC的中点为
你已经怎明了,AD,BE的交点G1,把AD分成2∶1.从而AD.CF的交点G2也把AD分成2∶1.[可以不必再证.下面*是证明],∴G1,G2重合.三个中线交于一点.*AG2=sAD=s(a-b/2)
已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角
延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角形AGC中,OD是中位线BD平行GC所以BOCG为平行四边形F'平分BCF'与F重合BC的中线AF
可以使用塞瓦定理证明:塞瓦定理设O是△ABC内任意一点,AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1假设DE是中点,则连接CO并延长交AB于F因为BD/
证明:已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则
已知△ABC中,AD,BE,CF分别是∠A,∠B,∠C的平分线.求证:AD,BE,CF交于一点证明:设AD与BE交于点P,则要证CF过点P,也就是要证CP平分∠C,用向量知识分析,即要证存在λ,使得向
设D,E,F是⊿ABC的角平分线AD,BE,CF与BC CA AB的交点则:BD/DC=AB/AC(着是角平分线的等比定理,如需要再问我)同理CE/EA=BC/AB &n
证明三角形的三条高的所在直线交于一点:(1)分别过各顶点作各边的平行线,构成大三角形;(2)由平行四边形知识分别证明各顶点是大三角形各边的中点;(3)证明三角形的三条高分别垂直于大三角形各边的;(4)