如图 ,∠AOB内一点P,点P₁,P₂分别是点P关于OA,OB的对称点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:59:55
如图 ,∠AOB内一点P,点P₁,P₂分别是点P关于OA,OB的对称点
2.作图说明:已知∠AOB,点P是平面内任意一点,⑴如图1,以点P为顶点作∠AOB两边的垂线,探究∠P与∠O

1,角p=角o2,p+o=180°3,p+o=90°再问:其实我是画不来图,求图呀!谢谢再答: 

对称轴 的性质如图:已知∠AOB内一点P,分别画出点P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于

由于p1是p关于oa的对称点,所以oa是pp1的垂直平分线,有垂直平分线性质易知pm=p1m,同理可知pn=np2所以,pm+mn+pn=p1m+mn+np=p1p2=5望给分.

如图,点M、N是∠AOB内两点,在OA上找一点P,在OB上找一点Q,使四边形MNOP的周长.

作M关于OA的对称点M'作N关于OB的对称点N'连结M'N'分别交OA、OB于O、P连结MP,OP,NP,MN此时四边形MNOP边长最短

如图,已知M是∠AOB内的一点,满足点M到OA,OB的两边的距离MC,MD相等,做射线OM,在射线OM上取一点P,连接P

图中所有相等的线段有OC=OD,PC=PD,MC=MD原因如下:∵∠MCO=∠MDO=90°,MC=MD,OM=OM∴△OCM≌△ODM(直角三角形HL)∴OC=OD,∠COM=∠DOM又∵OP=OP

如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于点M,交OB于点N,P1P

如图,∵P点关于OA、OB的对称点P1,P2,∴P1M=PM,P2N=PN,△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15,∴△PMN的周长为15.故选B.

如图,∠AOB=35°,P是∠AOB内任意一点,P₁、P₂分别是点P关于OA/OB的对称点,连接

由对称可知PC=P1C,PD=P2D,所以PCD周长为P1P2的长,即16CM.角P1OP2为70度再问:对么?再答:绝对对对于第二问你可以连接PO角AOP=角AOP1,同理可知自己再想想,两倍关系不

如图,∠AOB=30°,P是∠AOB内一点,OP=4cm,点C,D分别是点P关于OA,OB的对称点,连结CD,PM,PN

连接OC,OD∠POB=∠BOD,∠COA=∠AOP,∠AOP+∠POB=30°,∠COD=60°,因为,OP=OC,且,OP=OD,所以,CO=DO,所以,三角形COD是等腰三角形,且一个角是60度

如图,已知∠AOB,试在∠AOB内确定一点p,使点p到OA.OB,m,n的距离相等

到OA、OB距离相等的点在角AOB的角平分线上,到m、n距离相等的点在线段mn的垂直平分线上,所以p点就是角AOB的角平分线与线段mn的垂直平分线的交点,图很简单,自己就画了

如图,已知∠AOB=30°,P为∠AOB内的一点,OP=10cm,分别作出P关于OA,OB的对称点P1P2,

因为p和p1,p2对称,所以np=np2,mp=mp1,三角形周长既是求p1p2的长度连接0p2,op1,∠p2OB=∠BOP,∠POM=∠AOP1,所以∠p1op2=60°op2=op1=op=10

已知:如图,在∠AOB内有一点P,试作点P关于直线OA的对称点P1,再作点P1关于直线OB的对称点P2

作PP1⊥OA,垂足C,且PC=P1C;根据角平分线定理,OA为∠POP1的角平分线,∠POA=∠P1OA;作P1P2⊥OB,垂足D,且P1D=P2D;根据角平分线定理,OB为∠P1OP2的角平分线,

如图已知点P为角AOB内一点,分别作出点P关于OA,OB的对称点M,N,连接MN,交OA于点C,交OB于点D,若MN=1

我来再答:再答:希望采纳我的答案哦再问:图片能否再清晰一点再答:再答:解决了嘛?采纳哦

已知:如图,∠AOB内一点P,P1,P2分别P是关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5c

∵P与P1关于OA对称,∴OA为线段PP1的垂直平分线,∴MP=MP1,同理,P与P2关于OB对称,∴OB为线段PP2的垂直平分线,∴NP=NP2,∴P1P2=P1M+MN+NP2=MP+MN+NP=

如图,P为∠AOB内一点,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于 N,若P1P

∵P1,P2分别是P关于OA、OB的对称点,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+PN+MN=P1M+P2N+MN=P1P2,∵P1P2=8cm,∴△PMN的周长8cm.故选C.

如图 点P是∠AOB内的一点,1 过点P作PD∥OB 交OA于点D 2 过点P作PE∥OA 交OB于E点

∵四边形PDOE为平行四边形{已知两组对边分别平行},∴OD=PE{平行四边形对边相等}.

2.作图说明:      已知∠AOB,点P是平面内任意一点, ⑴如图1,以点P

(1)因为做完图后三角形角中有90度角,2个三角形,2个90度角,因此另外两角互余.而又有一对为对顶角,因此,角P=角O(2)图2:因为作图后发现有一个四边形,而四边形的内角和为2*180=360度,

尺规作图,如图,点P是角AOB内一点,过P作直线MN平行OA

作法:1、连续OP; 2、以O为圆心,OP为半径作弧交OA于点C; 3、分别以P、C为圆心,OP为半径作弧相交于点D; 4、过点P、D作直线MN,则MN为所求.证明:(略)

如图,点P是∠AOB外一点,根据下列语句画图

3.PC垂直OB,所以PCD是直角三角形,直角三角形两个非直角和为90°.这个应该学了吧,这个还没学就么的解了.由PD平行于AO,所以∠PDO与∠O角度相等,为50°,所以∠P=90°-50°=40°

如图,已知∠AOB内一定点P,能否在OA、OB上各找一点M、N,使△PMN的周长最小.

作关于OA的对称点P'关于OB的对称点P''连P'P''交OA于M,交OB于NpMN就是所求作的三角形