如图 ,已知BE垂直AC于点E,CF垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:13:54
如图 ,已知BE垂直AC于点E,CF垂直
已知,如图,BE=CF,BF垂直AC于F,CE垂直AB于E,BF和CE交于点D.求证AD平分角BAC.

∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF

如图,已知CD垂直AB于点D,BE垂直AC于点E,BE·CD交于点O,且AO平分角BAC.试说明:OB=OC

∵BE⊥AC,CD⊥AB,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO平分∠BAC,∴∠1=∠2.在△AOD和△AOE中,{∠ADC=∠AEB∠1=∠2OA=OA,∴△AOD≌△AOE(A

如图,在三角形abc中,已知角abc=45度,cd垂直ab于点d,be平分角abc,且be垂直ac于点e,与cd相交于点

∵BE平分角ABC,且BE垂直AC于点E,∴根据等腰三角形"三线合一",可知,三角形ABC是等腰三角形;AB=BC..∠BAC=∠BCA又∵∠ABC=45°,∴∠BAC=∠BCA=(180°-45°)

如图,已知在三角形ABC中,AD垂直BC于点D,BE垂直AC于点E,AD=BD,求证:AF+DC=BD

角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd

如图,已知三角形ABC中,AD垂直BC于点D,BE垂直AC于点E,AD=BD.求证AF+DC=BD

因为AD垂直BC,所以,角ABD=角ADC=90度,角C+角CAD=90度.因为BE垂直AC,所以,角C+角CBE=90度,所以,角CAD=角CBE.又因为BD=AD,所以,三角形FBD全等于三角形C

如图,已知三角形abc中,ad垂直于bc,be垂直于ac,垂足分别为d.e,ad交be于点h,ac等于bh,hd等于cd

得GD^2=BD*DC再证△BDH相似于△ADC得BD/AD=HD/DC即BD*DC=DH*DA所以GD^2=DH*DA

已知如图,1AB垂直于BE,ED垂直于BE ,点C在BE上,AB=CE,BC=ED ,求证;AC垂直于DC.

证明:∵AB⊥BE,DE⊥BE∴∠ABC=∠CED=90º又∵AB=CE,BC=DE∴⊿ABC≌⊿CED(SAS)∴∠A=∠DCE∵∠A+∠ACB=90º∴∠DCE+∠ACB=90

如图,已知矩形ABCD的对角线AC与BD相交于O点,OF垂直于AD于点F,OF=3cm,AE垂直于BD于点E,且BE:E

因为BF:ED=1:3,所以BE=1/4BD=1/2BO,所以BE=EO又因为AE⊥BD,所以△ABO是等腰三角形,所以AB=AO,∠AEB=∠AEO=90°,因为在矩形ABCD中,所以AO=BO,所

如图,CD垂直AB于点D,BE垂直AC于点E

因为ao平分∠bac,CD垂直AB于点D,BE垂直AC于点E.所以oe=od(角平分线定理)所以三角形aod全等与aoe,所以∠aoe=∠aod.所以由平角得到∠dob=∠eoc,再由全等定理得三角形

如图,CD垂直AC于点D,BE垂直AC于点E,AD=AE,试说明:AC=AB

因为CD垂直AC于点D,BE垂直AC于点E,所以角CDA=角BEA=90度又因为AD=AE,角A=角A所以三角形ADC全等于三角形AEB(ASA)所以AC=AB

如图,ab等于ac,cd垂直ab于d,be垂直ac于e,be与cd相交于点o 1求证ad等于ae

【1】∵CD⊥AB,BE⊥AC∴∠AEB=∠ADC=90°又∵∠A=∠A,AB=AC∴△ABE≌△ACD(AAS)∴AD=AE【2】∵AD=AE,AO=AO,∠ADO=∠AEO=90°∴Rt△ADO≌

如图,已知AD=CB,BE垂直AC于点E,DF垂直AC于点F,BE=DF,求证;AD//BC.

AD=CB,BE=DF,所以RT△ADF≌RT△CBE,所以∠DAF=∠BCE,∴AD//BC.

如图,已知AB=AC,AB垂直BD,AC垂直CD,AD,BC相交于点E,求证CE=BE.

AB=AC,AD=DART△ABD≌RT△ACD(HL)所以∠BAE=∠CAE,又AB=AC,∠BAE=∠CAE,AE=EA△ABE≌△ACE(SAS)即,BE=CE

如图,已知CD垂直AB于点D,BE垂直AC于点E,BE,CD交于点O,且AO平分∠BAC,求证,OB=OC

CD垂直AB于点D,BE垂直AC于CE.∠OEA=∠ODAAO平分∠BAC∠CAO=∠DAOAO=AO△OAE=△OADOB=OC

已知,如图,BE=CF,BF垂直于AC于F,CE垂直于AB于E,BF和CE交于点D,求证:

证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠

如图,已知BE垂直AC于点E,CF垂直AB于点F,BE,CF相交于点D,若BD=CD,求证AD平分角BAC

因为角BDF等于角CDE(对顶角相等),角Bfd等于角Ced,cd=Bd.所以三角形bfd全等于三角形ced、所以fd=ed,所以AD为角BAC的角平分线(到角两边距离相等的点在角平分线上)再答:改一