如图 ab cd是圆o的弦,且AB平行CD,弧AC与弧BD相等吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:10:30
如图 ab cd是圆o的弦,且AB平行CD,弧AC与弧BD相等吗
如图,已知AB,CD是圆O的两条弦,且AB=CD

∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

如图,AB是圆O的直径,AD是弦,E 是圆O外一点,EF垂直AB于F,交AD于点C,且CE=ED,求证:DE是圆O的切线

证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线

如图,AB与CD相交于点O,且AD平行BC,OA=OB,说说四边形ABCD是中心对称图形的原因

在四边形ACBD中,∵AD‖BC,∴∠OAD=∠OBC,又∵∠AOD与∠BOC是对顶角,∴∠AOD与∠BOC,又∵AO=BO∴由ASA得△AOD≌△BOC,∴AD=BC,∴四边形ACBD是平行四边形,

如图,AB是圆O的弦,CD切圆O于点M,且CD‖AB,求证AM=BM

连接OM,OM交AB于N,因为CD切圆于点M,所以,CD⊥OM,因为CD‖AB,所以,AB⊥OM,那么△MNA和三角形MNB全等,所以AM=BM

如图,以圆O的弦AB为边向圆外作正方形ABCD.

1.OA=OB,AD=BC,∠OBC=90°±∠OBA=90°±∠OAB=∠OAD所以△OAD≌△OBC,OD=OC又ON=OM,∠OMD=∠ONC=90°,△OMD≌△ONCDM=CN2.设OG⊥A

如图abcd是圆o的弦om垂直ab,on垂直cd垂足分别为mn且角amn=角cnm,ab与cd相等吗为什么

相等连接OB,OD证明∵∠AMN=∠CNM(已知)∠OMA=∠ONC=90°(已知)∴∠OMA-∠AMN=∠ONC-∠CNM(等量替换)∴∠OMN=∠ONM∴OM=ON(等角对等边)∵OB=OD(半径

如图ABCD是平行四边形,以AB为直径的圆O过点DE是圆O上的一点,且角AED等于45度.求题

http://zhidao.baidu.com/question/484438949.html看样子你是不想要答案而是要题不过这里面题图也有答案也有如果跟你卷子上给出的数值不一样自己代一下就可以了

如图,四边形ABCD是平行四边形,以AB为直径的圆o经过点D,E是圆o上的一点,且∠AED=40° 求证CD是圆o的切线

连结OD因为∠AED=45°所以∠DOA=90°又因为ABCD为平行四边形所以∠CDO=90°即CD是圆O的切线

如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.

如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=

(1)证明:由平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,得CB⊥平面ABEF,而AF⊂平面ABEF,所以AF⊥CB(2分)又因为AB为圆O的直径,所以AF⊥BF,(3分

已知 如图AB是圆O的弦,EF是弧AB上两点,且弧AB等于弧BF求证ac=bd

显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.

如图 EF过矩形ABCD对角线的交点O 且分别交AB CD于点E F,那么阴影部分的面积是矩形A

把右端的小阴影部分补到它所对的左端可知阴影部分是一个三角形三角形阴影部分是矩形的1/4

数学圆和直线如图,已知矩形ABCD中,AB=2,BC=二根号三,O是AC上一点,AO=m,且圆O的半径长为1.求NO.1

过O做OE垂直AB则有三角形相似可得OE/BC=AO/ACAO=m,BC=2√3AC由勾股定理=4所以OE=2√3m/4=√3m/2没有公共点,所以√3m/2>r=1m>2√3/3O在AC上,所以OA

如图,已知四边形ABCD为梯形,AD‖BC,若AD为圆O的直径,BC为圆O的一条弦,且AB=BC,则∠ABC的度数是

∵四边形ABCD内接于圆o∴∠BAD+∠BCD=180°∵AD∥BC∴∠BCD+∠ADC=180°∴∠BAD=∠ADC∴梯形ABCD是等腰梯形,AB=CD∵AB=BC∴AB=BC=CD∴∠AOB=∠B

如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,求角BOD的度数

120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度

如图,在正方形ABCD中,AC、BD相较于O,M、N分别是OA、OB上的两点,且MN‖AB,求证:BM=CN

证明:∵四边形ABCD是正方形∴OA=OB,∠BAM=∠CBN=45°∵MN‖AB∴OM=ON∴AM=BN∵AB=BC∴△ABM≌△CBN∴BM=CN

已知,如图,在平行四边形ABCD中,O为边AB的中点,且∠AOD=∠BOC,求证:平行四边形ABCD是矩形.

证明:∵四边形ABCD是平行四边形∴AB//CD,AD//BC∴∠AOD=∠ODC,∠BOC=∠OCD∵∠AOD=∠BOC∴∠ODC=∠OCD∴OC=OD又∵AO=BO,∠AOD=∠BOC∴⊿AOD≌

如图,在平行四边形ABCD中,O为边AB的中点,且∠AOD=∠BOC.求证:平行四边形是矩形.

因为AB//CD所以∠CDO=∠AOD,∠DCO=∠BOC因为∠AOD=∠BOC所以∠CDO=∠DCO所以OD=OC因为OA=OB,∠AOD=∠BOC所以△AOD≌△BOC所以∠OAD=∠OBC因为∠

如图,四边形ABCD内接于圆心O,CD平行AB且AB是圆心O的直径,AE垂直CD延长线于点E,求证:AE就圆O的切线

AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线