如图 ab是圆o的直径,割线da,db
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 02:47:54
证明:延长DO交CB的延长线于点E,过O作OF⊥DC于F∵AD切圆O于A∴∠DAO=90∵AD∥BC∴∠DAO=∠EBO=90,∠E=∠DAO∵OA=OB∴△AOD≌△BOE(AAS)∴OD=OE∵∠
延长PO交圆于D,∵PA=7cm,AB=5cm,∴PB=12cm;设圆的半径是x,∵PA•PB=PC•PD,∴(10-x)(10+x)=84,∴x=4.
(1)BE与DF不平行(1分)理由:过O作OM⊥EF,垂足为M,则EM=MF∵DE⊥AE,∴DE∥OM∴AE:AM=AD:AO=3:4 &nb
∵BC=CD=DAAB是直径∴弧BC=弧CD=弧DA=60°∴∠AOD=60°∴∠BOD=120°
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,∴PC2=PQ•PO(射影定理),又∵PC2=PE•PF,∴PQ•PO=PE•PF所以EFOQ四点共圆,∠EQF=∠EOF=2∠BAD,
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
太汗了,证明∠PAB=90°就行了连接BC,根据同弧对应的圆周角相等知∠ABC=∠PDA,AB是直径知∠ACB=90°,于是∠PAB=∠PAC+∠BAC=∠PDA+∠BAC=∠ABC+∠BAC=90°
先自己画个图,标准点,再看题目
连结OB,OA,OD,OC,BD由圆形的半径可知OB=OA=OC=OD,因为PB=PD,所以∠PBD=∠PDB因为OB=OD所以∠OBD=∠ODB因为等量减等量,差相等所以∠OBP=∠ODP因为OB=
设:切与G点.∵三角形OAD=OGD,OBC=OGC(各角的互补互余可推出)∴OG=OA=OB=R.
证明,根据圆割线与切线的关系,可知PA*PB=PC*PD,又因为PA=PC,则PB-PA=PD-PC即:AB=CD
120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度
:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD
由割线长定理得:PA•PB=PC•PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD为正三角形,∠CBD=12∠COD=30°.
可以吃但是要是过了几天就不能吃了
(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.∴CD=BD.∴CD=BD.(2)∵AC∥OD,∴PAPC=AOCD.∵PAPC=56,CD=BD,