如图 ab是圆o的直径交线段ac于e,点m为弧ae的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:06:26
如图 ab是圆o的直径交线段ac于e,点m为弧ae的中点
如图,AB是圆O的直径,AC切圆O于点A,且AC=AB,CO交圆O于点P,CO的延长线交圆O于点F,BP的延长线交AC于

1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C

已知:如图,BC是以线段AB为直径的圆O的切线,AC交圆O于点D

(1)第一问有点无厘头~BD=BE.BC⊥AB.AB≥DE.∠EDB=∠DAB.∠ADB=90°.………………汗这种问题(2)因为∠DCB=∠BCA,∠CDB=∠CBA=90°,所以△DCB∽△BCA

如图,AB为圆O的直径,AB平分∠BAC交圆O于点D,DE⊥AC交AC的延长线于点E,FB是圆O的切线交AD的延长线于点

1.连结OD,角EDA=角AFB角AFB+角FAB=角EDA+角ADO=90度,DE垂直于圆ODE是圆O的切线;2.连接BD,角ADB=90度=角E,由相似,由勾股定理求AE=9,再由相似求BF=10

已知:如图,AB,AC分别是圆O的直径和弦,D为劣弧AC上一点,弦DE交AB于点H,交AC于点F,过点C的切线交ED的延

连结CO.∵PC是⊙O的切线,∴OC⊥PC.∵CO=AO,∴∠OCA=∠OAC.∵PC=PF,∴∠PCF=∠PFC=∠AFH.∴∠AFH+∠OAC=∠PCF+∠OCA=∠PCO=90°.∴AB⊥ED.

如图,已知AB,AC分别是圆O的直径和弦,D为劣弧AC上一点,DE垂直于AB于点H,交圆O于点E,交AC于点F,P为ED

逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为

如图,以线段AB为直径的圆O交线段AC于点E,点M是弧AE的中点,OM交AC于点D,∠BOE=60°,cosC=1/2,

1、证明:因为∠BOE=60°所以∠BAE=1/2∠BOE=30°;又因为cosC=1/2,所以∠C=60°,所以∠ABC=90°,因为AB为圆O的直径,所以BC是圆O的切线.2、因为∠C=60°,所

如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长

(1)证明:∵AB为⊙O直径,∴∠ACB=90°,∴EM⊥AB,∴∠A=∠CNF=∠MNB=90°-∠B.∵CF为⊙O切线,∴∠OCF=90°.∴∠ACO=∠NCF=90°-∠OCB,∴△ACO∽△N

如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.

如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C

如图,AB是圆O的直径,AC是弦,角BAC的平分线AD交圆O与点D,DE垂直AC,交AC的延长线与点E,OE交AD于点F

8:5 看好了:假设,AC=3,AB=5首先,连接DO,交BC于M,DO为圆的半径,所以与DE垂直,与BC垂直,与AE平行三角形BMO与三角形BCA相似,所以OM=1/2AC=1.5&nbs

已知如图AB是圆O的直径,AC是弦,角BAC的平分线AD交圆0于点D如图,AB 是圆O的直径,AC是弦,角BAC的平分线

1、连结OD.  显然,AO=DO,∴∠OAD=∠ODA,而∠CAD=∠OAD,∴∠CAD=∠ODA,  ∴AE∥OD,又DE⊥AE,∴DE⊥OD,∴DE是⊙O的切线.2、你是不是将AE/AB=3/5

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于D,过点D作DE⊥AC,交AC于E.DE是圆O的切线么?为什么

连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B

如图 AB是圆o的直径,AC为弦,OD‖BC,交AC于点D,

OD‖BC  →△AOD∽△ABC  →OD/BC=AO/AB=1:2       &nb

如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交○O于点D,DE⊥AC交AC延长线于点E,OE交AD于点F.

连接OD,OD=OA,∠OAD=∠ODA;作OG⊥AC,交AC于G,则AG=GC=AC/2,(△OGA≌△OGC,SSA证明略);DE⊥AC,所以OG‖DE;AD为∠BAC的平分线,∠BAC=2∠DA

如图AB是圆O的直径M是线段OA上一点,过M作AB的垂线交AC于点N,交BC的延长线与点E,直线CF交EN于点F

∵S△AEB=1/2EM*AB=1/2AC*BE  又∵AB=10,AC=ME=8 BE=10 ∴设OM=X,则MB=5+X∴在Rt△BME中(5+X)^2=10^2-8^2∴X=1∴OM=1∴AM=

如图,△ABC中,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度

作AD垂直于BC因为AB=2*2^0.5所以AD=2.即以AD为直径的圆O半径为1.作连线EO和OF角BAC=60度,角BAD=角ABC=45度,所以角OAF=15度.所以角EOF=90+30=120

如图,AB是圆O的直径,AC切圆O于点A,CO交圆O于点P,CO的延长线交圆O于点F,BP延长线交AC于点E,连接AP,

1)等边三角形OFA与OBP全等(俩边长都为半径,加上钝角相等),∠3=∠2,∠2=∠1,所以1=3,所以平行2)连接ap,∠EAP=∠4,∠4=∠1,所以∠EAP=∠1,然后三角形CAP与CFA相似

如图,AB是圆O的直径,AC是弦,∠BAC的角平分线AD交圆O于点D,DE⊥AC交AC的延长线于点E,OE交AD于点F.

连接BC、CD∠ACB=90DE⊥AC∴BC//DE∠BCD=∠CDE∠BCD=∠DAB=∠DAE∴∠DAE=∠CDE则DE为D点切线,则OD⊥DEDO//AE∠ODF=∠DAE而∠OFD=∠EFA∴

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定