如图 ac为圆o的弦,d是弧bc的中点,ef垂直ac,求证ab是圆o的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:28:47
解;(2)连接OD因为EF为切线所以OD⊥EF过O点作OG垂直AE则四边形ODEG为正方形(OG=OD)所以OD=EG=OA又因为△AOG∽△AFG所以AG:AO=1:3=AG:EG因为AE=4所以A
已知AB为圆O的直径,所以OA=OB,且OD∥BC交AC于D,则OD是圆内接三角形的中位线,所以OS=1/2BC,若OD=5cm,则BC=10cm,三角形中位线定理:三角形的中位线平行于第三边,并且等
连接BC,因为D为AC中点O也为AB中点OD平行且相等于(1/2)BC即OD=(1/2)BC=1
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C
1)因为D是圆弧AC的中点,所以AC垂直于DO;因为AB是直径,且C是圆上一点,所以三角形ACB是直角三角形,角ACB=90°,所以AC垂直于BC;所以DO//BC;因为DE垂直于BC,所以DE垂直于
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
连接AD,勾股定理能算出来,BD=BE=5得出AE=8,设半径X,在直角三角形AOE中得出方程,解出半径再答:口算结果3分之10,方法就是这,结果没仔细算,你自己再好好算算再问:具体过程。。再答:AD
这题确实有点难.(1)较容易,就是两角相等证相似(一直径所对直角一等弧所对圆周角).(2)就稍难些了.在△BCD中用勾股定理求出BD的长,再证△ABE相似于△DBC,得AB:BD=BE:BC,再比例变
解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略
因为AB是圆的直径所以2AO=AB又D为AC的中点所以2AD=AC又角DAO=角CAB所以三角形DAO相似于三角形CAB所以2OD=BC=8cmOD=4
(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE
楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷
(1)证明:连接OD,∵D是BC的中点,∴∠BOD=∠A,∴OD∥AC,∵EF⊥AC,∴∠E=90°,∴∠ODF=90°,即EF是⊙O的切线;在△AEF中,∵∠E=90°,sin∠F=13,AE=4,
P在弧AC的中点因为P在弧AC的中点,所以弧PA=弧PC=弧AB所以角PCA=角PBC因为BC是直径,AD垂直BC于点D所以角P=角EDB=90度所以在三角形BDE和三角形PFC中,角BED=角PFC
如图,BC为圆O的直径,AD垂直于BC于D,P是弧AC上一动点,连接PB分别交AD,AC于点E,F(1)当弧AB=弧PA时,求证:AE=EB(2)当点P在什么位置时,AF=EF?证明你的结论.相关说明
证明:(1)连AB,AP,PC.∵A是弧BP的中点∴弧AB=弧AP∴∠ACB=∠ABP(等弧所对圆周角相等)又∵BC是圆O的直径,∴∠BAC=90°AD⊥BC于D,∴∠BAD=∠ACB(同为∠ABC的