如图 efgh分别是边BD BCAC AD的中点,且AB等于CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:25:36
如图 efgh分别是边BD BCAC AD的中点,且AB等于CD
如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形

连接BD AC ∵E为AB的中点 H为AD的中点 ∴EH‖等于1/2BD (中位线) ∵F ,G为BC DC的中点&nb

如图在四边形ABCD中EFGH分别是ABCDACBD的中点求证四边形EGFH是平行四边形

∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH‖BD,EH=1/2BD同理FG‖BD,FG=1/2BD∴EH‖FG,EH=FG∴平行四边形EHGF∴任意四边形的中点四边形的形状都是

如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

如图,EFGH分别为正方形ABCD的边AB,BC、cd、da上的点,

设边长=1,AE=BF=CG=DH=1/3ED=√10/3小正方形边长=√10/3-1/√10-1/3√10=√10/5小正方形面积=10/25=2/5阴影部分的面积与正方形ABCD的面积之比为=2/

如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.

做BD的辅助线连接,有题目可以得出,证明EFGH为平行四边形,只要证明四边形的两边是平行的就行了.\x0d在三角形ABD中,E,H分别为AB,AD,的中点,有三角形中点线证明可得,EH是平行于BD的,

如图,在四边形ABCD中,EFGH分别是AB BC CD DA的中点

证明:连接AC、BD因为EFGH是中点所以:EH=FG=1/2*BDHG=EF=1/2*AC(三角形中位线)对边分别相等,这个图形是平行四边形再问:我们还没学到中位线,可以用其他方法吗?再答:中三绝不

如图,已知EFGH分别是正方形各自所在边的的三等分点,如果正方形的面积是1平方厘米,那么四边形EFGH的面积是

很高兴为您解答,答案是九分之五这题不用想的很麻烦,因为都是三等分点,所以ae=三分之一af=三分之二利用割补法,总面积剪空白,即可求出答案.1-4x九分之一=九分之五

如图,在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B

已知:如图,矩形ABCD的外角平分线分别交于点EFGH.求证:四边形EFGH是正方形

证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB

如图E、F、G、H分别是矩形ABCD的各边中点,求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=

如图,E,F.G,H分别是四边形ABCD各边的中点,连结EF,FG,GH,HE,试判断EFGH是不是平行四边形?并证明

当四边形ABCD是正四边形时是平行四边形,而是不规则的四边形就不是

如图,点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以

如图,矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,连接EFGH,四边形EFGH是什么四边形?说明理

证明:四边形EFGH是菱形.连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的

如图,EFGH分别是正方形ABCD各边的中点,要使中间阴影部分的小正方形面积为1,则大正方形的边长应该是?

如图易知af平行于hc(bg上的两点分别设为m和n)又:f是bc中点由平行线分线段成比例定理得:bm=mn=1由于三角形abf相似于三角形bmf因此若设bf=x可得bm等于5分之2倍根号5所以5分之2

如图四边形ABCD,点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,得到四边形EFGH

证明:连接BD,∵点E、F、G、H分别是边AB、BC、CD、DA的中点.∴EH为△ABD的中位线,∴EH∥BD,EH=12BD.同理:FG∥BD,FG=12BD,∴EH∥FG,EH=FG∴四边形EFG

如图,平行四边形ABCD各内角的角平分线分别相交于EFGH,试说明四边形EFGH是矩形.

如图,角A,B,C,D,的角平分线交平行四边形各边为K,L,M,N.角KAD=角AKB=角BCM,所以,AK//CM,同理,BL//DN,所以四边形EFGH为平行四边形.又角ADC+角BCD=180度