如图 oa和ob是圆o的半径 并且oa垂直ob,P是OA上任意一点,BP

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:25:37
如图 oa和ob是圆o的半径 并且oa垂直ob,P是OA上任意一点,BP
如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点

证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°

如图,线段AB与圆O相切于点C,连接OA,OB.OB交圆O于点D,已知OA=OB=6,AB=6根3.求圆O的半径 (2)

1.连接OC因为OA=OB所以AC=BC=AB/2=3跟3且OC垂直AB所以半径=OC=跟号(6*6-3跟3*3跟3)=32.连接DC,阴影面积=三角形OCB面积-扇形面积因为OB=6,OC=3,所以

1 如图1,OA,OB是圆O的两条半径,且OA垂直OB,点C是OB的延长线上的任意一点,过点C作CD切圆O于点D,连接A

1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠

如图,在圆O中,OA⊥OB,C是AB弧上的一点,CD⊥OA,CE⊥OB,D,E为垂足.若圆O的半径为7.求DE的长度.

由OA⊥OB,CD⊥OA,CE⊥OB得四边形DCEO是矩形连接OC所以OC=DE因为OC是为径,即7所以DE=7

【急】如图,OA、OB、OC是圆O的三条半径,M、N分别是Oa、OB的中点,且MC=NC,求证:弧AC=弧BC

∵OM=0.5*OA=0.5*OB=ON,CM=CN,OC=OC∴△OMC≌△ONC∴∠AOC=∠BOC∴弧AC=弧BC

OB OA是圆O的半径,并且AO⊥OB,P是OA上任意一点,BP的延长线交圆O于Q,过Q点切线交OA的延长线于R,求证:

因为OB=OQ所以∠OBQ=∠OQB∠OBQ+∠BPO=90度∠OQB+∠RQP=90度所以∠BPO=∠RQP∠RQP=∠RPQ所以RP=PQ

如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线

是这个么?已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE

如图,CD为圆O的直径,OA,OB是圆O的半径,OA垂直于OB,构成一个直角圆心角,作AE垂直于CD于E,BF垂直于CD

三角形OAB为等腰直角三角形,斜边5倍根号2,则圆的半径为5,角AOE=角OBF,则直角三角形AOE全等于OBF,OE=BF,AE=OFCE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=1

已知,如图,OA,OB是圆O的半径,M,N分别是OA,OB的中点,点C是弧AB的中点,求证:MC=NC

用全等证明证明∵OA,OB是圆O的半径∴OA=OB又∵MN为OAOB中点∴OM=ON(1)∵点C是弧AB的中点∴弧AC=弧BC∴角MOC=角NOC(2)OC=OC(3)(1)(2)(3)得△CMO≌△

如图:AC=CB,D、E分别是半径OA和OB的中点,

证明:连接OC.在⊙O中,∵AC=CB∴∠AOC=∠BOC,∵OA=OB,D、E分别是半径OA和OB的中点,∴OD=OE,∵OC=OC(公共边),∴△COD≌△COE(SAS),∴CD=CE(全等三角

如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于点R

证明:(1)连接OQ;∵OB=OQ,∴∠B=∠BQO;∵PR=QR,∴∠RPQ=∠PQR∵∠B+∠BPO=90°,∠BPO=∠RPQ=∠PQR,∴∠BQO+∠PQR=90°,即OQ⊥QR,直线QR是⊙

如图oa,ob,oc是圆o的三条半径,cd=ce点d,e分别是oa,ob的中点求证弧ac=弧bc

估计缺了条件:连接OC∵CD⊥OA,CE⊥OB∴∠CEO=∠CDO=90又∵CD=CE,OC=OC∴Rt⊿CEO≌Rt⊿CDO(HL)∴∠AOC=∠COB∴弧AC=弧CB【同圆内相等圆心角所对的弧相等

已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上的任意一点,(不与O、A重合),BP的延长线⊙O于Q,过Q点作⊙O

做一条辅助线,连接OQOB,OQ是半径,得三角形BOQ是等腰三角形,所以∠OBQ=∠OQBOB⊥OA得∠OBP+∠OPB=90°QR是圆的切线,得∠OQR=∠OQB+∠PQR=90°得∠OBP+∠OP

如图OA,OB是圆O的半径,C是弧AB上的点,CD垂直于OA于D,CE垂直于OB于E,且CD=CE.求证:点C是弧AB的

∵CD垂直OA于DCE垂直OB于E∠OEC=∠DOC∵OC=OC,CD=CE∴△EOC和△DOC全等(HL)∴∠AOC=∠BOC∴弧CA=BC(圆心角定义的推论)∴C是弧AB中点.

圆o中,E.F是弦CD上的点,并且CE=FD半径OA.OB分别经过E.F点求正OEF是等腰三角形 圆o

连接OC,OD.因为OC=OD,所以角OCE=角ODF.在三角形COE和三角形DOF中,OC=OD,角OCE=角ODF,CE=DF,所以三角形COE和三角形DOF全等,所以角OEC=角OFD.又角OE

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

如图,已知OA、OB是圆O的两条半径,C、D分别在OA、OB上且AD=BD求证AD=BD

证明:∵AC=BD,OAOB∴OC=OD∵∠A=∠A∴△OAD≌△OBC∴AD=BC

如图,OA、OB、OC是圆O的三条半径,M、N分别是Oa、OB的中点,且MC=NC,求证:弧AC=弧BC

∵OM=0.5*OA=0.5*OB=ON,CM=CN,OC=OC∴△OMC≌△ONC∴∠AOC=∠BOC∴弧AC=弧BC