如图 p为正方形abcd内的一点,三角形abp绕着点b顺时针旋转得到三角形cbe

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:52:09
如图 p为正方形abcd内的一点,三角形abp绕着点b顺时针旋转得到三角形cbe
如图,P为正方形ABCD内一点,且PBC为等边三角形,则PAD=

因为四边形ABCD是正方形,三角形PBC是等边三角形,BC=BP=BA,所以∠PBC=60°,∠ABP=30°三角形BAP是等腰三角形,根据等腰三角形的性质得∠PAB=∠APB=(180°-30°)÷

如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3,试求∠APB的度数.

本题用旋转法可以巧解.将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2,QA=PC=3,∠ABQ=∠PBC,由于∠PBC+∠ABP=90°,所以∠PBQ=∠

如图,P为正方形ABCD内一点,PA=PB=10,并且P点到CD边的距离也等于10,求正方形ABCD的面积.

如图,过P作EF⊥AB于E,交CD于F,则PF⊥CD,∴PF=PA=PB=10,E为AB中点,设PE=x,则AB=AD=10+x,所以AE=12AB=12(10+x),在Rt△PAE中,PA2=PE2

如图,P为正方形ABCD内一点,在△ABC中,PA=1,PB=2,∠APB=135°,求PC的长.

将△APB绕B顺时针旋转90度,得△CQB,则QP=2根号2,∠CQP=90度CQ=1,所以PC=3

如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.

1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=

如图,P为正方形ABCD内一点,(用初三题,

正方形ABCD的面积=AB²,答案如图

已知,如图正方形abcd中,p为形内一点,∠apb=135°,ap=根号3.bp=1,求pc的长

/>将△ABP旋转到△BCM,连接PM显然BP=BM=1,CM=PA=√3,∠ABP=∠CBM,∠BMC=∠APB=135°所以∠PBM=∠ABC=90°所以△PBM是等腰直角三角形所以PM=√2*P

如图已知p是边长为1的正方形abcd内的一点,且三角形abp的面积为0.4,求三角形dcp的面积

p是边长为1的正方形abcd内的一点,且三角形abp的面积为0.4,则三角形abp中ab边上的高为0.4X2/1=0.8从而三角形dcp中dc边上的高为1-0.8=0.2三角形dcp的面积的面积为1X

如图,正方形ABCD的边长为2,P为正方形ABCD内一点,且△PBC为等腰三角形,则△CDP的面积为______.

过点P作PE⊥DC于点E,∵△PBC为等腰三角形,∴P在线段BC的垂直平分线上,∴PE=12BC=1,∴△CDP的面积为:12×2×1=1.故答案为:1.

如图,P是正方形ABCD内的任意一点,且三角形APD的面积为m,三角形BPC面积是n,正方形面积是多少?

正方形的面积分为两部分:即长方形AEFD和长方形BCFE.长方形AEFD的面积是三角形APD的面积的2倍,即2n.长方形BCFE的面积是三角形BPC的面积的2倍,即2m.则正方形的面积是2n+2m.

如图p为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0)求正方形ABCD的面积.

只需要已B点做一个旋转90度至D点那么PD=2a*根号2在三角形PDC中有a,3a,和2a*根号2那么勾股定理可知3a为PDC的斜边,PD和DF为直角边那么角BDC=45+90=135度再根据余弦定理

如图3-19,P为正方形ABCD内一点,PA=1,PB=2,PC=3,求∠APB的度数.

把△ABP旋转.AB和BC重合,P到P'处,∠BP'P=45°∠PP'C=90°所以∠APB=135°

已知:如图,正方形ABCD中,P为形内一点,且AP=1,BP=2,CP=3,则正方形ABCD的面积等于()

正确选项为(D).作BE垂直BP,使BE=BP(点E和P在BC两侧),连接PE,CE.则:∠BPE=∠BEP=45°;PE²=BE²+BP²=4+4=8;∵∠EBP=∠C

如图,P为边长是2的正方形ABCD内一点,△PBC为等边三角形,则S△BPD=?

S△BPD=S△BPC+S△PDC-S△BCD过P作AB,CD的垂线,垂足为E,FAB‖CDP,E,F共线又△PBC为等边三角形易证P为EF中点S△APB=S△CPDS△APB+S△CPD=AB*BC

如图,p为正方形abcd内一点 若pd=1 pa=2 pb=3

将△APB顺时针旋转90°,连结PP'△ABP全等于△CBP'∴∠1=∠2∵四边形ABCD是正方形∴∠1+∠3=90°∴∠2+∠3=90°∴BP=BP'∴△BPP'为等腰三角形∴∠4=∠5=45°∵P

如图,P为正方形ABCD内一点,若PA:PB:PC=1:2:3,则∠APB的度数为_______

将△APB绕B点顺时针旋转90°,得△BEC则有△BEC≌△APB,∠APB=∠BEC可知△BEP为等腰直角△,故∠BEP=45°PE=2√2,而PC=3,CE=1所以PC²=PE²

如图,P为正方形ABCD内一点,PA=1,PB=2,PC=3.求ABCD的面积

作ΔAED使∠DAE=∠BAP,AE=AP连结EP,则ΔADE≌ΔABP(SAS)同样方法,作ΔDFC且有ΔDFC≌ΔBPC.易证ΔEAP为等腰直角三角形,又∵AP=1∴PE=√2同理,PF=3√2∵

一道九年级几何题已知:如图正方形ABCD中,P为正方形内一点,且AP=1,BP=2,CP=3则正方形ABCD的面积等于.

把△ABP顺时针旋转90°到△CP'B,角P'BP=90°,∴PP'=√2BP=2√2,又PP'平方+P'C平方=PC平方∴角PP'C=90°,角BP'C=135°在△BPC中,已知两边及夹角,用余弦