如图 p是等边三角形abc内部一点 角APB,角BPC,角CPA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:08:08
如图 p是等边三角形abc内部一点 角APB,角BPC,角CPA
已知,如图,等边三角形ABC外有一点P,设P到AB,BC,AC的距离分别是PD,PE,PF,△ABC的高是h.

如图: ABCP的面积=S△ABC+S△APC=S△ABP+S△BCP∴AC*h*1/2+AC*PF*1/2=AB*PD*1/2+BC*PE*1/2   &nb

如图,p为等边三角形abc内部一点,pb=2,pc=1,∠bpc=150°,求ap的长

如图将三角形APC绕点A顺时针旋转至三角形AP'B位置则三角形APC全等于三角形AP'B角P'BP=角P'BA+角ABP=角ACP+角ABP=60-角PCB+60-角P

如图,P是等边三角形abc外接圆弧bc上任意一点,求证:pa=pb+pc

证明:在PA上取点D,使PD=PB,连接BD∵等边三角形ABC∴∠ABC=∠ACB=60,AB=BC∵∠APB,∠ACB所对应圆弧都为劣弧AB∴∠APB=∠ACB=60∴PD=PB∴等边三角形BPD∴

已知等边三角形ABC,P为三角形内部一点,

证明:过P向BC方向作BP垂线PD,且使PD=PC,连接BD、CD.∠BPC=150°故DPC=150°-90°=60°PD=PC故△CPD为等边三角形∠PCA=∠DCB故△PCA≌△DCBAP=BD

如图,P是等边三角形ABC中的一个点,PA=2,PB=23

将△BAP绕B点逆时针旋转60°得△BCM,则BA与BC重合,如图,∴BM=BP,MC=PA=2,∠PBM=60°.∴△BPM是等边三角形,∴PM=PB=23,在△MCP中,PC=4,∴PC2=PM2

如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后,能与△ACP'重合,如果AP=3.求PP

∵△ABP绕点A逆时针旋转后,能与△ACP'重合∴∠PAP'=∠BAC=60°,AP=AP'∴△APP'是正三角形,∴PP'=AP=3

如图;等边三角形ABC中,点E,F分别是AB,AC的中点,P为BC上一点,连接EP,做等边三角形EPQ,连接FQ,EF

这个题目主要考察的是正弦定理和余弦定理的应用.(1)用正弦定理即可求出 EP  BP的长度.(2)EQ=EP  EF=10     ∠FEQ=60°-45°(∠FEQ=∠QEP-∠PEF ∠PEF=∠

如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.

(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,PC=PC所以Rt△PBC≌Rt△PAC,可得AC=BC.如图,取AB中点D,连接PD、CD,则PD⊥AB,CD⊥AB,所以AB⊥平面

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

一道数学题:如图,等边三角形ABC中,AB=2,点P是AB边上的任一点,

(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°AB=AC=BC=2∵PE⊥BC于E∴∠PEB=90°∴△BPE是直角三角形∴BP=2BE同理可证:EC=2FCAF=2AQ∵BP=xAQ=y∴B

如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后能与△ACP′重合,如果AP=3,求PP′

∵△ABC是等边三角形,∴∠BAC=60°∵△ABP绕A点逆时针旋转后与△ACP′重合,∴AP=AP′,∠BAP=∠CAP′,∴∠BAC=∠BAP+∠CAP=∠CAP+∠CAP′=∠PAP′=60°,

等边三角形三角形ABC是等边三角形,P为三角形ABC内部一点,将三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,如

因为三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,所以三角形ABP与三角形ACQ全等所以AP=AQ=3因为三角形ABC是等边三角形所以∠BAC=∠ABC=60`又因为∠PAC+∠BAP=∠AB

如图,△ABC是等边三角形,AE=CD,BQ垂直AD于Q,BE交AD于P

1、三角形abc是直角三角形,所以AB=AC,∠BAC=∠ACB=60°,∵AE=DC,∴△ABE全等与△ADC,∴∠DAC=∠ABE,∴∠ABE+∠BAE=60°∴∠BPQ=60°,则∠PBQ=30

如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.

∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△ACD,∴∠ABE=∠DAC.又∵∠BPQ=∠ABE+∠BAD,∴∠BPQ=∠DAE+∠BAD=60°,∴在

如图,点P是等边三角形ABC内一点,且点P到三边的距离分别是1,2,3,求面积

等于正三角形边长3倍再问:不对吧,正三角的面积是(根号3)/4乘以边长的平方吧再答:我说的是它的面积刚好等于这个正三角形边长的 3 倍。当然得先求出边长,经计算等于 4&

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S