如图 p是角bac的平分线上的一点,pb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:37:56
解题思路:本题目主要考查三角形的面积以及角平分线的知识,辅助线是关键解题过程:
1)∵BP平分∠CBD,∴点P到BC、BD的距离相等(角平分线上的点到这个角两边的距离相等)同理,∵CP平分∠BCE,∴点P到CB、CE的距离相等,∴点P到BD和CE(即AB、AC)的距离相等,∴点P
过E作EG⊥AD交AD于点G,作EH⊥AC交AC于点H,作EI⊥BC交BC于点I,AE平分∠CAB,EG=EH,BE平分∠CBD,EG=EI,在RT△EHC与RT△EIC中,EH=EI,EC=EC,R
过E作EG⊥AD交AD于点G,作EH⊥AC交AC于点H,作EI⊥BC交BC于点I,AE平分∠CAB,——》EG=EH,BE平分∠CBD,——》EG=EI,在RT△EHC与RT△EIC中,EH=EI,E
如上图角平分线的性质可知三红线相等,于是推得CE为平分线.
证明:过点P分别过点P作PD⊥AM于D,PE⊥BC于E,PF⊥AN于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(到角两边距离相等的点
作EG垂直AB交AB于G,EH垂直BC于H点,EK垂直AC于K,∠1=∠2,EK=EG,∠3=∠4,EG=EH,∴EH=EK,∴点E在外角BVF的角平分线上再问:谢谢了再问:太给力了,你的回答完美解决
如图,连接EC,过E点分别做AF,BC,AB的垂线,垂足分别是F,D,G因为E在角CAB的平分线上,所以EF=EG同理,ED=EG, 所以EF
由三角形外角等于其他两个之和,可知:∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC∠A+∠ABC+∠ACB=180,∠ABC+2∠CBP=180,∠ACB+2∠BCP=180,∠BCP+∠CBP+
证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A
分别过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.
证明:过F作FM⊥AD,FN⊥AE,FP⊥BC角平分线FB,FC,且FM⊥AD,FN⊥AE,FP⊥BC∴FM=FP,FE=FP∴FM=FE,FM⊥AD,FN⊥AE∴AF平分∠DAE即F在∠BAC的平分
在BA延长线上取一点D使AC=AD;因为P在∠DAC的角平分线上,∴PD=PC.(可以用SAS证明)∴PB+PC=PB+PD;AB+AC=AB+AD=BD;比较等号右端,可知PB+PD>BD;∴PB+
证明:过F分别作直线BA、BC、AC的垂线,垂足分别为T、Q、R因为BF是∠DBC的平分线所以FT=FQ因为FC是∠ECB的平分线所以FQ=FR所以FT=FR所以点F在∠DAE(即∠BAC)的平分线上
老题.辅助线:过F作FM⊥AD,FN⊥AE,FP⊥BC证明:角平分线FB,FC,且FM⊥AD,FN⊥AE,FP⊥BC∴FM=FP,FE=FP∴FM=FE,FM⊥AD,FN⊥AE∴AF平分∠DAE■定理
过F做AB、BC、AC的垂线,垂足分别为l、m、因为BF为<DBC的角平分线,所以FL=FM同理,FM=FN则FL=FN所以AF为角BAC的角平分线
1):P是∠AOB平分线上的一点;∠AOP=∠DOP;PC⊥OA,PD⊥OB;∠PAO=∠PDO;△AOP≌△DOP(角角边);OC=OD;2、设CD交OP于E点则在△COE与△DOE中∵OC=OD,
证明:过点P分别作AM、BC、AN的垂线PE、PF、PD,E、F、D为垂足,∵CP是∠MCB的平分线,∴PE=PD.同理:PF=PD.∴PE=PF.∴点P在∠BAC的平分线上.