如图 rt 三角形 abc内有边长分别为 a,b,c的三个正方形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:33:24
证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故
如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4
距离最大你算错了,该是2+2*根号3吧,距离最小就是P10P6,P10P6=AP6-AP10=AP6-(2/3)AF=AP6-(2/3)AB*sin60=2-(2/3)*2*(2分之根号3)=2-3分
根据坐标得AB=3,则AC=4,C点的坐标为(1,4)平移的意思是坐标y不变,当y=4时,直线上对应的x=5,则C的坐标变为(5,4)则A的坐标为(5,0),B的坐标(8,0)
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
∵三角形AEF相似于三角形EBD∴AF/EF=ED/DB∴AF*DB=EF*ED=144(1)由勾股定理AC2+BC2=AB2∴(AF+12)^2+(BD+12)^2=35^2展开:AF^2+BD^2
a/sinA=2R(R是外接圆的半径)r=(a+b-c)/2r是直角三角形内切圆的半径
过A作AM垂直BC,交DG于N,BC于M∵DEFG为正方形∴DG∥EF∴△ADG相似于△ABC∴DG/BC=AN/AM∵DEFG为正方形∴DG=MN,设DG为X,则MN=DG=X又△ABC为直角三角形
过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A
1d=-32y=6/xx+2y-7=03M(0,2)4x+2y-7=02y=-x+7m=-1n=7k=66
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
求证啥东西?麻烦采纳,谢谢!
你在纸上随便画一个草图!你会发现图上的直角三角形里除了三个正方形之外还剩四个三角形!这四个三角形相似的!把中间两个三角形的两条直角边比一下就能得出结论!a/(b-c)=(b-a)/c得出结论b=a+c
连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45
解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的