如图 三棱锥D ABC的底面ABC是锐角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:52:18
(Ⅰ)证明:∵PA⊥底面ABC,BC⊂底面ABC,∴PA⊥BC,又AC⊥BC,PA∩AC=A,∴BC⊥面PAC,又AH⊂面PAC,∴AH⊥BC,∵H为PC的中点,且PA=AC,∴AH⊥PC,又PC∩B
证明:(1)∵SA⊥底面ABC∴SA⊥AB∵AB⊥AC∴AB⊥平面SAC(2)如图,做AD⊥BC,交点为D,连接SD,做AE⊥SD,交点为E∵SA⊥底面ABC∴SA⊥BC∵AD⊥BC∴BC⊥平面SAD
条件中,应为PA=AB(1)由于PA⊥平面ABC,所以PA⊥BC,又由条件,AC⊥BC,所以BC⊥平面PAC(2)DE//BC,BC⊥平面PAC,所以DE⊥平面PAC所以∠DAE就是AD与平面PAC所
题目错的吧
证明:(Ⅰ)∵E,F分别是AC,BC的中点,∴EF∥PB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(Ⅱ)∵侧棱PA⊥底面ABC,∴PA⊥BC,又由AB⊥BC,PA∩AB=A,∴BC⊥
外是各边垂直平分线交点再问:PA与底面ABC所成角为__再答:60°因为是外心,且角BAC=π/2,所以P的投影P'在BC中点PA=PB,P'A=P'B=(1/2)BC所以△PAP'全等于△PBP'所
PB⊥底面ABC,∴平面PBC⊥平面ABC于BC,∠BCA=90°,∴AC⊥平面PBC,∴平面PAC⊥平面PBC于PC,PB=BC,E为PC的中点,∴BE⊥AC,∴BE⊥平面PAC.2.BC=CA,M
MN怎么是平面.1.MN怎么平行于PBC啊.MN可以平行于PAC3.连接mc因为MN为PBAB中点所以mn平行于ap所以mn垂直于ab所以∠bmc为B-MN-C的二面角因为M为ab中点所以mb=mc且
解题思路:本题主要考查三角形垂心的性质以及线面垂直的判定定理的应用。解题过程:
三个侧棱是顶角30度的等腰三角形,沿侧棱AB剪开并展平,三个等腰三角形ABC,ACD,ADB',连结BB',与AC交于M,与AD交于N,
在⊿BPA中,DE//PA,DE不在平面PAC内,PA在平面PAC内,所以DE//平面PAC
设棱长为a,顶点P在底面ABC的投影就是△ABC的中心O连接OP、OA、OB、OC,那么OP⊥OA所以∠PAO即为PA与底面ABC所成的角在Rt△OAP中,AP=a,OA=2/3×(√3/2*a)=√
连接AO,在等边三角形ABC中,由AB=3,可得AO=2332−(32)2=3,在Rt△AOP中,AP=3+6=3,∴正三棱锥P-ABC的四个面是全等的等边三角形,∴S表面积=4×34×32=93.
(1)因为PA⊥底面ABC,PB与底面ABC所成的角为π3所以 ∠PBA=π3 因为AB=2,所以PA=23VP−ABC=13S△ABC•PA=13•34•4•23=2
已知正三棱锥v-ABC底面边长为6,则底面外接圆半径=2√3侧棱,高,底面外接圆半径构成直角三角形所以侧棱=根号【高^2+底面外接圆半径^2】=根号21斜高,侧棱,底边一半构成直角三角形侧棱=根号【斜
(1)三棱锥P-ABC的体积=﹙1/3﹚×3×﹙√3/4﹚×6²=9√3﹙体积单位﹚(2)侧面PBC与底面ABC所成二面角α:设D是BC中点则AD=3√3tanα=PA/AB=1/√3α=3
点F在PA上,且2PF=FA,∴向量BF=(2/3)BP+(1/3)BA=(2/3)(0,0,2)+(1/3)(2,2,0)=(2/3,2/3,4/3).设平面BEF的法向量为n1=(x,y,1),由
这是2005年高考数学(理)试题(浙江卷)答案看图