如图 三角形ABC 三角形ADE都是等边三角形 点D F分别在边BC AB上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:13:02
如图 三角形ABC 三角形ADE都是等边三角形 点D F分别在边BC AB上
如图,已知三角形ABC全都三角形ade,ab等于AD,……求!

答案为60度因为△ABC≌△ADE故角ABC=角ADE=30°角ACB=角AED=105°所以角ACG=75°由角CAD=15°可知角AFC=90°即角DFG=90°(对顶角)由上证角ADE=30°故

如图,已知三角形ABC相似于三角形ADE,连接BD,CE.1.是说明三角形ABD相似于三角形

证明:(1)∵△ABC∽△ADE∴AB/AC=AD/AE,∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即:∠BAD=∠CAE∴△ABD∽△ACE(两组对应边的比相等,且相应的夹角相等)(

如图,已知E是AC上一点,三角形ABE全等三角形ADE.求证:三角形ABC全等三角形ADC

因为AB=AC,BD=CE所以AD=AE又角A=角A,AB=AC所以三角形ABE全等于三角形ACD(SAS)

如图,在三角形ABC和三角形ADE中,角BAD=角CAE,∠ABC=∠ADE

△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)

已知:如图,bd、ce是三角形abc的两条高,求证:三角行ade相似三角形abc

三角形面积相等,所以AB*CE*1/2=AC*BD*1/2,AB*CE=AC*BD,AB/AC=BD/CE,角A=角A,三角形ABD相似于三角形ACE,所以AD/AE=AB/AC,角A=角A,所以三角

abc三角形abc三角形,如图AE等于2.2厘米,BE等于4.2厘米,角1加角2等于90度,求三角形ADE和三角形BEF

答:把直角三角形ADE绕点E逆时针旋转到RT三角形GFE可以证明,GE垂直BE所以:面积之和=直角三角形BEG面积=2.2*4.2/2=4.62平方厘米

如图,三角形ABC全等三角形ADE求证角BAD=角CAE

因为全等三角形,所以角BAC=角DAE;所以角BAC-角DAC=角DAE-角DAC;即角BAD=角CAE再答:给好评啊

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

已知如图,BD,CE为三角形ABC的高,求证:ADE~ABC

证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中

如图,三角形ade与三角形abc有公共的顶点a,角1=角2,角abc等于角ade,则三角形ab

全等.-------------------------没图,我只能提醒你用ASA或AAS做

如图,已知三角形ABC全等于三角形ADE.试说明∠1=∠2

因为俩三角形全等所以∠BAC=∠DAE,两边都减去∠DACe所以∠1=∠2

如图,S三角形ABC=1,S三角形DEC=S三角形BDE=S三角形ACE,求S三角形ADE的面积

∵S△DEC=S△BDE,∴BD=DC∵S△CDE=S△ACE∴S△ACE:S△BCE=1:2,∴AE:BE=1:2S△ADE:S△BDE=1:2,不妨设S三角形DEC=S三角形BDE=S三角形ACE

如图,在三角形ABC中,已知三角形ADE、三角形DCE、三角形BCD的面积分别是89、28、56,那么三角形DBE的

ADE面积/DCE面积=AE/CE=89/28,ACD面积/BCD面积=AD/BD=(89+28)/26=9/2,所以DBE面积=(89+28+26)*89/(89+28)*2/(2+9)=178/9

如图,三角形ABC,DE平行于BC,S三角形ABC=9/2S三角形DCE则S三角形ADE:S三角形ABC=

设S△ABC=9a,则S△DEC=2a,S△ADE=xa∵DE//BC∴△AED∽△ABCAE/AC=AD/ABAE/CE=AD/BDS△ADE/S△DEC=S△ADC/S△BDCax/2a=(ax+

如图,点d,e,f分别是三角形abc各边中点,证明三角形ade,三角形bdf,三角形cef,三角形def全等

如图∵d,e,f分别是三角形abc各边的中点∴de,ef,df分别为三角形的三条中位线∴df‖bc,de‖ac,ef‖ab∴df=be=ce,de=af=cf,ef=ad=bd∴△ade≌△bdf≌△

如图,S三角形ABC=1,S三角形BDE=S三角形BDE=S三角形ACE,求S三角形ADE的面积

S三角形BDE=S三角形BDE=S三角形ACE?是S△DEC=S△BDE=S△ACE吧∵S△DEC=S△BDE,∴BD=DC∵S△CDE=S△ACE∴S△ACE:S△BCE=1:2,∴AE:BE=1: